sukuya commited on
Commit
b54331c
1 Parent(s): 6a057d3

update the technical report link

Browse files
Files changed (1) hide show
  1. README.md +7 -3
README.md CHANGED
@@ -5,10 +5,14 @@ license: apache-2.0
5
  ## Model Description
6
  RakutenAI-7B is a systematic initiative that brings the latest technologies to the world of Japanese LLMs. RakutenAI-7B achieves the best scores on the Japanese language understanding benchmarks while maintaining a competitive performance on the English test sets among similar models such as OpenCalm, Elyza, Youri, Nekomata and Swallow. RakutenAI-7B leverages the Mistral model architecture and is based on [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) pre-trained checkpoint, exemplifying a successful retrofitting of the pre-trained model weights. Moreover, we extend Mistral's vocabulary from 32k to 48k to offer a better character-per-token rate for Japanese.
7
 
 
 
8
  *If you are looking for a foundation model, check [RakutenAI-7B](https://huggingface.co/Rakuten/RakutenAI-7B)*.
9
 
10
  *If you are looking for an instruction-tuned model, check [RakutenAI-7B-instruct](https://huggingface.co/Rakuten/RakutenAI-7B-instruct)*.
11
 
 
 
12
  ## Usage
13
 
14
  ```python
@@ -66,11 +70,11 @@ The suite of RakutenAI-7B models is capable of generating human-like text on a w
66
  For citing our work on the suite of RakutenAI-7B models, please use:
67
 
68
  ```
69
- @misc{2024RakutenAI-7B,
70
  title={RakutenAI-7B: Extending Large Language Models for Japanese},
71
- author={Rakuten Group, Inc.},
72
  year={2024},
73
- eprint={}, // will be updated soon
74
  archivePrefix={arXiv},
75
  primaryClass={cs.CL}
76
  }
 
5
  ## Model Description
6
  RakutenAI-7B is a systematic initiative that brings the latest technologies to the world of Japanese LLMs. RakutenAI-7B achieves the best scores on the Japanese language understanding benchmarks while maintaining a competitive performance on the English test sets among similar models such as OpenCalm, Elyza, Youri, Nekomata and Swallow. RakutenAI-7B leverages the Mistral model architecture and is based on [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) pre-trained checkpoint, exemplifying a successful retrofitting of the pre-trained model weights. Moreover, we extend Mistral's vocabulary from 32k to 48k to offer a better character-per-token rate for Japanese.
7
 
8
+ *The technical report can be accessed at [arXiv](https://arxiv.org/abs/2403.15484).*
9
+
10
  *If you are looking for a foundation model, check [RakutenAI-7B](https://huggingface.co/Rakuten/RakutenAI-7B)*.
11
 
12
  *If you are looking for an instruction-tuned model, check [RakutenAI-7B-instruct](https://huggingface.co/Rakuten/RakutenAI-7B-instruct)*.
13
 
14
+ An independent evaluation by Kamata et.al. for [Nejumi LLMリーダーボード Neo](https://wandb.ai/wandb-japan/llm-leaderboard/reports/Nejumi-LLM-Neo--Vmlldzo2MTkyMTU0#総合評価) using a weighted average of [llm-jp-eval](https://github.com/llm-jp/llm-jp-eval) and [Japanese MT-bench](https://github.com/Stability-AI/FastChat/tree/jp-stable/fastchat/llm_judge) also confirms the highest performance of instruct/chat versions of RakutenAI-7B.
15
+
16
  ## Usage
17
 
18
  ```python
 
70
  For citing our work on the suite of RakutenAI-7B models, please use:
71
 
72
  ```
73
+ @misc{rakutengroup2024rakutenai7b,
74
  title={RakutenAI-7B: Extending Large Language Models for Japanese},
75
+ author={{Rakuten Group, Inc.} and Aaron Levine and Connie Huang and Chenguang Wang and Eduardo Batista and Ewa Szymanska and Hongyi Ding and Hou Wei Chou and Jean-François Pessiot and Johanes Effendi and Justin Chiu and Kai Torben Ohlhus and Karan Chopra and Keiji Shinzato and Koji Murakami and Lee Xiong and Lei Chen and Maki Kubota and Maksim Tkachenko and Miroku Lee and Naoki Takahashi and Prathyusha Jwalapuram and Ryutaro Tatsushima and Saurabh Jain and Sunil Kumar Yadav and Ting Cai and Wei-Te Chen and Yandi Xia and Yuki Nakayama and Yutaka Higashiyama},
76
  year={2024},
77
+ eprint={2403.15484},
78
  archivePrefix={arXiv},
79
  primaryClass={cs.CL}
80
  }