File size: 9,935 Bytes
7f17e27 f01cf19 7f17e27 922de14 7f17e27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
---
license: mit
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
- visual emb-gam
---
# Model description
This is a LogisticRegressionCV model trained on averages of patch embeddings from the Imagenette dataset. This forms the GAM of an [Emb-GAM](https://arxiv.org/abs/2209.11799) extended to images. Patch embeddings are meant to be extracted with the [`google/vit-base-patch16-224` ViT checkpoint](https://huggingface.co/google/vit-base-patch16-224).
## Intended uses & limitations
This model is not intended to be used in production.
## Training Procedure
### Hyperparameters
The model is trained with below hyperparameters.
<details>
<summary> Click to expand </summary>
| Hyperparameter | Value |
|-------------------|-----------------------------------------------------------|
| Cs | 10 |
| class_weight | |
| cv | StratifiedKFold(n_splits=5, random_state=1, shuffle=True) |
| dual | False |
| fit_intercept | True |
| intercept_scaling | 1.0 |
| l1_ratios | |
| max_iter | 100 |
| multi_class | auto |
| n_jobs | |
| penalty | l2 |
| random_state | 1 |
| refit | False |
| scoring | |
| solver | lbfgs |
| tol | 0.0001 |
| verbose | 0 |
</details>
### Model Plot
The model plot is below.
<style>#sk-57980b4f-6828-4a54-ae50-b50e1f9f097e {color: black;background-color: white;}#sk-57980b4f-6828-4a54-ae50-b50e1f9f097e pre{padding: 0;}#sk-57980b4f-6828-4a54-ae50-b50e1f9f097e div.sk-toggleable {background-color: white;}#sk-57980b4f-6828-4a54-ae50-b50e1f9f097e label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-57980b4f-6828-4a54-ae50-b50e1f9f097e label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-57980b4f-6828-4a54-ae50-b50e1f9f097e label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-57980b4f-6828-4a54-ae50-b50e1f9f097e div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-57980b4f-6828-4a54-ae50-b50e1f9f097e div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-57980b4f-6828-4a54-ae50-b50e1f9f097e div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-57980b4f-6828-4a54-ae50-b50e1f9f097e input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-57980b4f-6828-4a54-ae50-b50e1f9f097e input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-57980b4f-6828-4a54-ae50-b50e1f9f097e div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-57980b4f-6828-4a54-ae50-b50e1f9f097e div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-57980b4f-6828-4a54-ae50-b50e1f9f097e input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-57980b4f-6828-4a54-ae50-b50e1f9f097e div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-57980b4f-6828-4a54-ae50-b50e1f9f097e div.sk-estimator:hover {background-color: #d4ebff;}#sk-57980b4f-6828-4a54-ae50-b50e1f9f097e div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-57980b4f-6828-4a54-ae50-b50e1f9f097e div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-57980b4f-6828-4a54-ae50-b50e1f9f097e div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-57980b4f-6828-4a54-ae50-b50e1f9f097e div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-57980b4f-6828-4a54-ae50-b50e1f9f097e div.sk-item {z-index: 1;}#sk-57980b4f-6828-4a54-ae50-b50e1f9f097e div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-57980b4f-6828-4a54-ae50-b50e1f9f097e div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-57980b4f-6828-4a54-ae50-b50e1f9f097e div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-57980b4f-6828-4a54-ae50-b50e1f9f097e div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-57980b4f-6828-4a54-ae50-b50e1f9f097e div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-57980b4f-6828-4a54-ae50-b50e1f9f097e div.sk-parallel-item:only-child::after {width: 0;}#sk-57980b4f-6828-4a54-ae50-b50e1f9f097e div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-57980b4f-6828-4a54-ae50-b50e1f9f097e div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-57980b4f-6828-4a54-ae50-b50e1f9f097e div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-57980b4f-6828-4a54-ae50-b50e1f9f097e div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-57980b4f-6828-4a54-ae50-b50e1f9f097e div.sk-text-repr-fallback {display: none;}</style><div id="sk-57980b4f-6828-4a54-ae50-b50e1f9f097e" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>LogisticRegressionCV(cv=StratifiedKFold(n_splits=5, random_state=1, shuffle=True),random_state=1, refit=False)</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="51ec5e46-9aaa-4487-adda-6718142c9f85" type="checkbox" checked><label for="51ec5e46-9aaa-4487-adda-6718142c9f85" class="sk-toggleable__label sk-toggleable__label-arrow">LogisticRegressionCV</label><div class="sk-toggleable__content"><pre>LogisticRegressionCV(cv=StratifiedKFold(n_splits=5, random_state=1, shuffle=True),random_state=1, refit=False)</pre></div></div></div></div></div>
## Evaluation Results
You can find the details about evaluation process and the evaluation results.
| Metric | Value |
|----------|---------|
| accuracy | 0.99465 |
| f1 score | 0.99465 |
# How to Get Started with the Model
Use the code below to get started with the model.
<details>
<summary> Click to expand </summary>
```python
from PIL import Image
from skops import hub_utils
import torch
from transformers import AutoFeatureExtractor, AutoModel
import pickle
import os
# load embedding model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
feature_extractor = AutoFeatureExtractor.from_pretrained("google/vit-base-patch16-224")
model = AutoModel.from_pretrained("google/vit-base-patch16-224").eval().to(device)
# load logistic regression
os.mkdir("emb-gam-vit")
hub_utils.download(repo_id="Ramos-Ramos/emb-gam-vit", dst="emb-gam-vit")
with open("emb-gam-vit/model.pkl", "rb") as file:
logistic_regression = pickle.load(file)
# load image
img = Image.open("examples/english_springer.png")
# preprocess image
inputs = {k: v.to(device) for k, v in feature_extractor(img, return_tensors='pt').items()}
# extract patch embeddings
with torch.no_grad():
patch_embeddings = model(**inputs).last_hidden_state[0, 1:].cpu()
# classify
pred = logistic_regression.predict(patch_embeddings.sum(dim=0, keepdim=True))
# get patch contributions
patch_contributions = logistic_regression.coef_ @ patch_embeddings.T.numpy()
```
</details>
# Model Card Authors
This model card is written by following authors:
Patrick Ramos and Ryan Ramos
# Model Card Contact
You can contact the model card authors through following channels:
[More Information Needed]
# Citation
Below you can find information related to citation.
**BibTeX:**
```
@article{singh2022emb,
title={Emb-GAM: an Interpretable and Efficient Predictor using Pre-trained Language Models},
author={Singh, Chandan and Gao, Jianfeng},
journal={arXiv preprint arXiv:2209.11799},
year={2022}
}
```
# Additional Content
## confusion_matrix
![confusion_matrix](confusion_matrix.png) |