RaphaelReinauer
commited on
Commit
•
55235fc
1
Parent(s):
574ce17
Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- dsf.zip +3 -0
- dsf/_stable_baselines3_version +1 -0
- dsf/data +91 -0
- dsf/policy.optimizer.pth +3 -0
- dsf/policy.pth +3 -0
- dsf/pytorch_variables.pth +3 -0
- dsf/system_info.txt +7 -0
- ppo-LunarLander-v2_1000_steps.zip +3 -0
- ppo-LunarLander-v2_1000_steps/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2_1000_steps/data +94 -0
- ppo-LunarLander-v2_1000_steps/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2_1000_steps/policy.pth +3 -0
- ppo-LunarLander-v2_1000_steps/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2_1000_steps/system_info.txt +7 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: -19.39 +/- 48.89
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x00000201A7A54B80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x00000201A7A54C10>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x00000201A7A54CA0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x00000201A7A54D30>", "_build": "<function ActorCriticPolicy._build at 0x00000201A7A54DC0>", "forward": "<function ActorCriticPolicy.forward at 0x00000201A7A54E50>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x00000201A7A54EE0>", "_predict": "<function ActorCriticPolicy._predict at 0x00000201A7A54F70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x00000201A7A58040>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x00000201A7A580D0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x00000201A7A58160>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x00000201A7A4CDE0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 32768, "_total_timesteps": 10000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652307042.1220438, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVmwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGtjOlxVc2Vyc1xSYXBoYWVsXEFwcERhdGFcTG9jYWxcUHJvZ3JhbXNcUHl0aG9uXFB5dGhvbjM4XGxpYlxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDXVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -2.2768, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIbD1DOKYYfsCUhpRSlIwBbJRLY4wBdJRHQIw1xprULD11fZQoaAZoCWgPQwjJVwIpsYhnwJSGlFKUaBVLVGgWR0CMNdDYywfRdX2UKGgGaAloD0MIescpOpK8U8CUhpRSlGgVS21oFkdAjDXMzl90BHV9lChoBmgJaA9DCCDURQpljTBAlIaUUpRoFUtfaBZHQIw2Mx9G7SR1fZQoaAZoCWgPQwgRyCWOPPlZwJSGlFKUaBVLQmgWR0CMNrAUtZmqdX2UKGgGaAloD0MIyjLEsS55XMCUhpRSlGgVS0RoFkdAjDbOkk8ifXV9lChoBmgJaA9DCOVk4lbBS3XAlIaUUpRoFUt3aBZHQIw28vPC2tx1fZQoaAZoCWgPQwjmsWZkUCBxwJSGlFKUaBVLZGgWR0CMNzlFtsN2dX2UKGgGaAloD0MIUps4ud+qWMCUhpRSlGgVSztoFkdAjDgq8lHBlHV9lChoBmgJaA9DCIpz1NEx5XLAlIaUUpRoFUt6aBZHQIw4lXNke6t1fZQoaAZoCWgPQwgRqP5BJJtjwJSGlFKUaBVLXmgWR0CMOLxqfvnbdX2UKGgGaAloD0MIcXMqGQA4X8CUhpRSlGgVS11oFkdAjDkVPepGWnV9lChoBmgJaA9DCLKfxVKkGmLAlIaUUpRoFUtdaBZHQIw5LeVLSNR1fZQoaAZoCWgPQwjdRC3NretUwJSGlFKUaBVLQ2gWR0CMOT433pOfdX2UKGgGaAloD0MIahfTTPeqEUCUhpRSlGgVS4RoFkdAjDlZZB9kSXV9lChoBmgJaA9DCA2mYfiI6WbAlIaUUpRoFUtWaBZHQIw5gf8uSOl1fZQoaAZoCWgPQwj7O9ujt1xiwJSGlFKUaBVLWmgWR0CMOYUcn3L3dX2UKGgGaAloD0MIeekmMQi+UsCUhpRSlGgVS0VoFkdAjDmj28IzFnV9lChoBmgJaA9DCNbHQ99drmDAlIaUUpRoFUtlaBZHQIw5+/Firkt1fZQoaAZoCWgPQwgKuVLPgq9twJSGlFKUaBVLUWgWR0CMOiLjxTbWdX2UKGgGaAloD0MIRUYHJOE/Y8CUhpRSlGgVS3JoFkdAjDp0xM36ynV9lChoBmgJaA9DCLfVrDO+a13AlIaUUpRoFUtraBZHQIw69B+nZTR1fZQoaAZoCWgPQwii0LLuHz5kwJSGlFKUaBVLcGgWR0CMO3zo2XLNdX2UKGgGaAloD0MIfSB551BnXcCUhpRSlGgVS0JoFkdAjDuFI/Z/TnV9lChoBmgJaA9DCL1tpkI8/2nAlIaUUpRoFUtTaBZHQIw8i6H0se51fZQoaAZoCWgPQwhW9IdmnrphwJSGlFKUaBVLUmgWR0CMPNT4tYjjdX2UKGgGaAloD0MIF0omp3Z5VsCUhpRSlGgVS3xoFkdAjDz0h/y5JHV9lChoBmgJaA9DCNy8cVKYLGHAlIaUUpRoFUtuaBZHQIw8/sVtXPt1fZQoaAZoCWgPQwhATS1bK+J2wJSGlFKUaBVLYWgWR0CMPQDSPU8WdX2UKGgGaAloD0MIl3K+2PvEbcCUhpRSlGgVS3JoFkdAjD0A08/2TXV9lChoBmgJaA9DCO+usyF/xGDAlIaUUpRoFUtraBZHQIw9UdgfEGZ1fZQoaAZoCWgPQwh6/x8nzG1owJSGlFKUaBVLSGgWR0CMPWAxSHdodX2UKGgGaAloD0MIUORJ0rV6c8CUhpRSlGgVS2toFkdAjD2l1SwW33V9lChoBmgJaA9DCMb6BiY3b3HAlIaUUpRoFUtfaBZHQIw9wHTqjah1fZQoaAZoCWgPQwig3SHFgPt1wJSGlFKUaBVLdmgWR0CMPibTc6/7dX2UKGgGaAloD0MIaVGf5I7iZsCUhpRSlGgVS2doFkdAjD5Hn2ZiNXV9lChoBmgJaA9DCIhkyLH1TnbAlIaUUpRoFUtZaBZHQIw/Fnh86WB1fZQoaAZoCWgPQwi9cVKYtw10wJSGlFKUaBVLXGgWR0CMPz9zfaYedX2UKGgGaAloD0MIV81zRD7IZMCUhpRSlGgVS3FoFkdAjD+DAJswc3V9lChoBmgJaA9DCF8IOe//XlfAlIaUUpRoFUtEaBZHQIw/ukep4r11fZQoaAZoCWgPQwhTQNr/AONkwJSGlFKUaBVLSGgWR0CMP+GmDUVjdX2UKGgGaAloD0MIWhE10eccWMCUhpRSlGgVS1doFkdAjEAIHkcS5HV9lChoBmgJaA9DCD9VhQZiiV7AlIaUUpRoFUtUaBZHQIxBCB06o2p1fZQoaAZoCWgPQwgQzxJkBAhfwJSGlFKUaBVLZ2gWR0CMQRyaNMoMdX2UKGgGaAloD0MIJXfYROYxY8CUhpRSlGgVS3RoFkdAjEGdnK4hEHV9lChoBmgJaA9DCJaWkXpPd1jAlIaUUpRoFUtDaBZHQIxB2w1R+Bp1fZQoaAZoCWgPQwh1IVZ/hMxjwJSGlFKUaBVLcmgWR0CMQgYSg5BDdX2UKGgGaAloD0MI4SnkSj3JWcCUhpRSlGgVS3loFkdAjEJDfvWpZXV9lChoBmgJaA9DCN0LzApFtWTAlIaUUpRoFUtlaBZHQIxCSagElmh1fZQoaAZoCWgPQwgSFhVxOgBiwJSGlFKUaBVLcmgWR0CMQnCJoCdSdX2UKGgGaAloD0MINPYlG4/6Z8CUhpRSlGgVS0JoFkdAjEJ6yrxRVXV9lChoBmgJaA9DCEs7NZebTWHAlIaUUpRoFUuOaBZHQIxCq+vhZQp1fZQoaAZoCWgPQwgDCvX0Ea1fwJSGlFKUaBVLQWgWR0CMQsqslsxgdX2UKGgGaAloD0MI8BZIUPzOXcCUhpRSlGgVS25oFkdAjELQzLwF1XV9lChoBmgJaA9DCB4Wak3zdV7AlIaUUpRoFUtCaBZHQIxD/epGWld1fZQoaAZoCWgPQwhLPQtC+aFowJSGlFKUaBVLdmgWR0CMREFr2xptdX2UKGgGaAloD0MIv36IDZbUYsCUhpRSlGgVSz5oFkdAjERT4L1EmnV9lChoBmgJaA9DCI5cN6U8DmTAlIaUUpRoFUtraBZHQIxEcIkZ75V1fZQoaAZoCWgPQwjDuYYZ2kxwwJSGlFKUaBVLUmgWR0CMRJmDlHSXdX2UKGgGaAloD0MI73A7NCwNWMCUhpRSlGgVS0toFkdAjEUeoLofS3V9lChoBmgJaA9DCFBwsaKGpGXAlIaUUpRoFUuKaBZHQIxFZEBsANp1fZQoaAZoCWgPQwiZKa2/pZdgwJSGlFKUaBVLSmgWR0CMRXzUZvUCdX2UKGgGaAloD0MIBaT9DzCxcMCUhpRSlGgVS0xoFkdAjEXxjSXt0HV9lChoBmgJaA9DCDCBW3fzKEBAlIaUUpRoFUtZaBZHQIxGS6+WWyF1fZQoaAZoCWgPQwgIHt/eNeBPwJSGlFKUaBVLVGgWR0CMRnKUVzp5dX2UKGgGaAloD0MI4SU49YFqY8CUhpRSlGgVS2JoFkdAjEa65oXbd3V9lChoBmgJaA9DCGzRArStWlnAlIaUUpRoFUtxaBZHQIxG8KTjebd1fZQoaAZoCWgPQwhgPe5brQ1XwJSGlFKUaBVLRGgWR0CMRzYkE9t/dX2UKGgGaAloD0MILEoJwarqcMCUhpRSlGgVS2doFkdAjEdAaNuLrHV9lChoBmgJaA9DCGGMSBTa22LAlIaUUpRoFUt2aBZHQIxHdPi1iON1fZQoaAZoCWgPQwikiuJV1jZVwJSGlFKUaBVLT2gWR0CMR9lOoHcDdX2UKGgGaAloD0MIOugSDr3FLsCUhpRSlGgVS1hoFkdAjEflmFrVOXV9lChoBmgJaA9DCNc07zhFwlnAlIaUUpRoFUs7aBZHQIxIBxJd0JZ1fZQoaAZoCWgPQwgG9S1zutdVwJSGlFKUaBVLYGgWR0CMSKakyk9EdX2UKGgGaAloD0MILgH4p1SXQMCUhpRSlGgVS1doFkdAjEjuUMXrMXV9lChoBmgJaA9DCOVEuwqp5HbAlIaUUpRoFUtPaBZHQIxI7lDF6zF1fZQoaAZoCWgPQwh+jLlriflowJSGlFKUaBVLbWgWR0CMSVzshPj5dX2UKGgGaAloD0MI/wWCABnKZsCUhpRSlGgVSz5oFkdAjElzbnHNo3V9lChoBmgJaA9DCILknUMZ9FzAlIaUUpRoFUs5aBZHQIxJcWCVbA11fZQoaAZoCWgPQwjTwI9qWG5xwJSGlFKUaBVLVWgWR0CMSasIVuaXdX2UKGgGaAloD0MI7BNAMbKMasCUhpRSlGgVS1FoFkdAjEnblaKUFHV9lChoBmgJaA9DCFCnPLqRPmLAlIaUUpRoFUtBaBZHQIxKEEHMUyp1fZQoaAZoCWgPQwiqudxgqGpbwJSGlFKUaBVLUmgWR0CMShBBzFMqdX2UKGgGaAloD0MIr1+wG7YcccCUhpRSlGgVS1toFkdAjEs7SJCSinV9lChoBmgJaA9DCGBZaVKKWHHAlIaUUpRoFUtXaBZHQIxLoavRqoJ1fZQoaAZoCWgPQwjDoEyjSVt2wJSGlFKUaBVLZWgWR0CMS9oCdSVGdX2UKGgGaAloD0MI6DI1Cd5RYcCUhpRSlGgVS05oFkdAjEwIFmnO0XV9lChoBmgJaA9DCGHij6JOzXHAlIaUUpRoFUtuaBZHQIxMmXqqwQl1fZQoaAZoCWgPQwhJZB9kWXg9wJSGlFKUaBVLQ2gWR0CMTMitaIN3dX2UKGgGaAloD0MI6x1uh4YIYcCUhpRSlGgVS3BoFkdAjEzfKQq7RXV9lChoBmgJaA9DCNMuppnuO3vAlIaUUpRoFUthaBZHQIxNMxqO9391fZQoaAZoCWgPQwiNX3glyTNjwJSGlFKUaBVLV2gWR0CMTUWIoE0SdX2UKGgGaAloD0MIuqC+ZU5LaMCUhpRSlGgVS0toFkdAjE1eF+NLlHV9lChoBmgJaA9DCBIR/kWQJnDAlIaUUpRoFUttaBZHQIxNuDOC5Et1fZQoaAZoCWgPQwht/l91ZKNvwJSGlFKUaBVLYmgWR0CMTf/qgRK6dX2UKGgGaAloD0MIt0QuOINJXMCUhpRSlGgVS2xoFkdAjE4zF2mpEXV9lChoBmgJaA9DCHr/HyfMVmrAlIaUUpRoFUtAaBZHQIxO4S8J2Md1fZQoaAZoCWgPQwi9GMqJ9pNgwJSGlFKUaBVLgWgWR0CMTxJQLux9dX2UKGgGaAloD0MIDyvc8pGFZcCUhpRSlGgVS09oFkdAjE8kxIre7HV9lChoBmgJaA9DCLg7a7ddi1jAlIaUUpRoFUt0aBZHQIxPMRBeHBV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 10, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVmwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGtjOlxVc2Vyc1xSYXBoYWVsXEFwcERhdGFcTG9jYWxcUHJvZ3JhbXNcUHl0aG9uXFB5dGhvbjM4XGxpYlxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDXVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Windows-10-10.0.19041-SP0 10.0.19041", "Python": "3.8.0", "Stable-Baselines3": "1.5.0", "PyTorch": "1.10.0+cu113", "GPU Enabled": "True", "Numpy": "1.22.0", "Gym": "0.21.0"}}
|
dsf.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aec4b82508716a3a3a5b68bfb8c82d668cb828a702ffcef43ac0485281198c35
|
3 |
+
size 142874
|
dsf/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
dsf/data
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x00000201A7A54B80>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x00000201A7A54C10>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x00000201A7A54CA0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x00000201A7A54D30>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x00000201A7A54DC0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x00000201A7A54E50>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x00000201A7A54EE0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x00000201A7A54F70>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x00000201A7A58040>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x00000201A7A580D0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x00000201A7A58160>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x00000201A7A4CDE0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 32768,
|
46 |
+
"_total_timesteps": 10000.0,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652307042.1220438,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVmwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGtjOlxVc2Vyc1xSYXBoYWVsXEFwcERhdGFcTG9jYWxcUHJvZ3JhbXNcUHl0aG9uXFB5dGhvbjM4XGxpYlxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDXVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": null,
|
58 |
+
"_last_episode_starts": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_original_obs": null,
|
63 |
+
"_episode_num": 0,
|
64 |
+
"use_sde": false,
|
65 |
+
"sde_sample_freq": -1,
|
66 |
+
"_current_progress_remaining": -2.2768,
|
67 |
+
"ep_info_buffer": {
|
68 |
+
":type:": "<class 'collections.deque'>",
|
69 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIbD1DOKYYfsCUhpRSlIwBbJRLY4wBdJRHQIw1xprULD11fZQoaAZoCWgPQwjJVwIpsYhnwJSGlFKUaBVLVGgWR0CMNdDYywfRdX2UKGgGaAloD0MIescpOpK8U8CUhpRSlGgVS21oFkdAjDXMzl90BHV9lChoBmgJaA9DCCDURQpljTBAlIaUUpRoFUtfaBZHQIw2Mx9G7SR1fZQoaAZoCWgPQwgRyCWOPPlZwJSGlFKUaBVLQmgWR0CMNrAUtZmqdX2UKGgGaAloD0MIyjLEsS55XMCUhpRSlGgVS0RoFkdAjDbOkk8ifXV9lChoBmgJaA9DCOVk4lbBS3XAlIaUUpRoFUt3aBZHQIw28vPC2tx1fZQoaAZoCWgPQwjmsWZkUCBxwJSGlFKUaBVLZGgWR0CMNzlFtsN2dX2UKGgGaAloD0MIUps4ud+qWMCUhpRSlGgVSztoFkdAjDgq8lHBlHV9lChoBmgJaA9DCIpz1NEx5XLAlIaUUpRoFUt6aBZHQIw4lXNke6t1fZQoaAZoCWgPQwgRqP5BJJtjwJSGlFKUaBVLXmgWR0CMOLxqfvnbdX2UKGgGaAloD0MIcXMqGQA4X8CUhpRSlGgVS11oFkdAjDkVPepGWnV9lChoBmgJaA9DCLKfxVKkGmLAlIaUUpRoFUtdaBZHQIw5LeVLSNR1fZQoaAZoCWgPQwjdRC3NretUwJSGlFKUaBVLQ2gWR0CMOT433pOfdX2UKGgGaAloD0MIahfTTPeqEUCUhpRSlGgVS4RoFkdAjDlZZB9kSXV9lChoBmgJaA9DCA2mYfiI6WbAlIaUUpRoFUtWaBZHQIw5gf8uSOl1fZQoaAZoCWgPQwj7O9ujt1xiwJSGlFKUaBVLWmgWR0CMOYUcn3L3dX2UKGgGaAloD0MIeekmMQi+UsCUhpRSlGgVS0VoFkdAjDmj28IzFnV9lChoBmgJaA9DCNbHQ99drmDAlIaUUpRoFUtlaBZHQIw5+/Firkt1fZQoaAZoCWgPQwgKuVLPgq9twJSGlFKUaBVLUWgWR0CMOiLjxTbWdX2UKGgGaAloD0MIRUYHJOE/Y8CUhpRSlGgVS3JoFkdAjDp0xM36ynV9lChoBmgJaA9DCLfVrDO+a13AlIaUUpRoFUtraBZHQIw69B+nZTR1fZQoaAZoCWgPQwii0LLuHz5kwJSGlFKUaBVLcGgWR0CMO3zo2XLNdX2UKGgGaAloD0MIfSB551BnXcCUhpRSlGgVS0JoFkdAjDuFI/Z/TnV9lChoBmgJaA9DCL1tpkI8/2nAlIaUUpRoFUtTaBZHQIw8i6H0se51fZQoaAZoCWgPQwhW9IdmnrphwJSGlFKUaBVLUmgWR0CMPNT4tYjjdX2UKGgGaAloD0MIF0omp3Z5VsCUhpRSlGgVS3xoFkdAjDz0h/y5JHV9lChoBmgJaA9DCNy8cVKYLGHAlIaUUpRoFUtuaBZHQIw8/sVtXPt1fZQoaAZoCWgPQwhATS1bK+J2wJSGlFKUaBVLYWgWR0CMPQDSPU8WdX2UKGgGaAloD0MIl3K+2PvEbcCUhpRSlGgVS3JoFkdAjD0A08/2TXV9lChoBmgJaA9DCO+usyF/xGDAlIaUUpRoFUtraBZHQIw9UdgfEGZ1fZQoaAZoCWgPQwh6/x8nzG1owJSGlFKUaBVLSGgWR0CMPWAxSHdodX2UKGgGaAloD0MIUORJ0rV6c8CUhpRSlGgVS2toFkdAjD2l1SwW33V9lChoBmgJaA9DCMb6BiY3b3HAlIaUUpRoFUtfaBZHQIw9wHTqjah1fZQoaAZoCWgPQwig3SHFgPt1wJSGlFKUaBVLdmgWR0CMPibTc6/7dX2UKGgGaAloD0MIaVGf5I7iZsCUhpRSlGgVS2doFkdAjD5Hn2ZiNXV9lChoBmgJaA9DCIhkyLH1TnbAlIaUUpRoFUtZaBZHQIw/Fnh86WB1fZQoaAZoCWgPQwi9cVKYtw10wJSGlFKUaBVLXGgWR0CMPz9zfaYedX2UKGgGaAloD0MIV81zRD7IZMCUhpRSlGgVS3FoFkdAjD+DAJswc3V9lChoBmgJaA9DCF8IOe//XlfAlIaUUpRoFUtEaBZHQIw/ukep4r11fZQoaAZoCWgPQwhTQNr/AONkwJSGlFKUaBVLSGgWR0CMP+GmDUVjdX2UKGgGaAloD0MIWhE10eccWMCUhpRSlGgVS1doFkdAjEAIHkcS5HV9lChoBmgJaA9DCD9VhQZiiV7AlIaUUpRoFUtUaBZHQIxBCB06o2p1fZQoaAZoCWgPQwgQzxJkBAhfwJSGlFKUaBVLZ2gWR0CMQRyaNMoMdX2UKGgGaAloD0MIJXfYROYxY8CUhpRSlGgVS3RoFkdAjEGdnK4hEHV9lChoBmgJaA9DCJaWkXpPd1jAlIaUUpRoFUtDaBZHQIxB2w1R+Bp1fZQoaAZoCWgPQwh1IVZ/hMxjwJSGlFKUaBVLcmgWR0CMQgYSg5BDdX2UKGgGaAloD0MI4SnkSj3JWcCUhpRSlGgVS3loFkdAjEJDfvWpZXV9lChoBmgJaA9DCN0LzApFtWTAlIaUUpRoFUtlaBZHQIxCSagElmh1fZQoaAZoCWgPQwgSFhVxOgBiwJSGlFKUaBVLcmgWR0CMQnCJoCdSdX2UKGgGaAloD0MINPYlG4/6Z8CUhpRSlGgVS0JoFkdAjEJ6yrxRVXV9lChoBmgJaA9DCEs7NZebTWHAlIaUUpRoFUuOaBZHQIxCq+vhZQp1fZQoaAZoCWgPQwgDCvX0Ea1fwJSGlFKUaBVLQWgWR0CMQsqslsxgdX2UKGgGaAloD0MI8BZIUPzOXcCUhpRSlGgVS25oFkdAjELQzLwF1XV9lChoBmgJaA9DCB4Wak3zdV7AlIaUUpRoFUtCaBZHQIxD/epGWld1fZQoaAZoCWgPQwhLPQtC+aFowJSGlFKUaBVLdmgWR0CMREFr2xptdX2UKGgGaAloD0MIv36IDZbUYsCUhpRSlGgVSz5oFkdAjERT4L1EmnV9lChoBmgJaA9DCI5cN6U8DmTAlIaUUpRoFUtraBZHQIxEcIkZ75V1fZQoaAZoCWgPQwjDuYYZ2kxwwJSGlFKUaBVLUmgWR0CMRJmDlHSXdX2UKGgGaAloD0MI73A7NCwNWMCUhpRSlGgVS0toFkdAjEUeoLofS3V9lChoBmgJaA9DCFBwsaKGpGXAlIaUUpRoFUuKaBZHQIxFZEBsANp1fZQoaAZoCWgPQwiZKa2/pZdgwJSGlFKUaBVLSmgWR0CMRXzUZvUCdX2UKGgGaAloD0MIBaT9DzCxcMCUhpRSlGgVS0xoFkdAjEXxjSXt0HV9lChoBmgJaA9DCDCBW3fzKEBAlIaUUpRoFUtZaBZHQIxGS6+WWyF1fZQoaAZoCWgPQwgIHt/eNeBPwJSGlFKUaBVLVGgWR0CMRnKUVzp5dX2UKGgGaAloD0MI4SU49YFqY8CUhpRSlGgVS2JoFkdAjEa65oXbd3V9lChoBmgJaA9DCGzRArStWlnAlIaUUpRoFUtxaBZHQIxG8KTjebd1fZQoaAZoCWgPQwhgPe5brQ1XwJSGlFKUaBVLRGgWR0CMRzYkE9t/dX2UKGgGaAloD0MILEoJwarqcMCUhpRSlGgVS2doFkdAjEdAaNuLrHV9lChoBmgJaA9DCGGMSBTa22LAlIaUUpRoFUt2aBZHQIxHdPi1iON1fZQoaAZoCWgPQwikiuJV1jZVwJSGlFKUaBVLT2gWR0CMR9lOoHcDdX2UKGgGaAloD0MIOugSDr3FLsCUhpRSlGgVS1hoFkdAjEflmFrVOXV9lChoBmgJaA9DCNc07zhFwlnAlIaUUpRoFUs7aBZHQIxIBxJd0JZ1fZQoaAZoCWgPQwgG9S1zutdVwJSGlFKUaBVLYGgWR0CMSKakyk9EdX2UKGgGaAloD0MILgH4p1SXQMCUhpRSlGgVS1doFkdAjEjuUMXrMXV9lChoBmgJaA9DCOVEuwqp5HbAlIaUUpRoFUtPaBZHQIxI7lDF6zF1fZQoaAZoCWgPQwh+jLlriflowJSGlFKUaBVLbWgWR0CMSVzshPj5dX2UKGgGaAloD0MI/wWCABnKZsCUhpRSlGgVSz5oFkdAjElzbnHNo3V9lChoBmgJaA9DCILknUMZ9FzAlIaUUpRoFUs5aBZHQIxJcWCVbA11fZQoaAZoCWgPQwjTwI9qWG5xwJSGlFKUaBVLVWgWR0CMSasIVuaXdX2UKGgGaAloD0MI7BNAMbKMasCUhpRSlGgVS1FoFkdAjEnblaKUFHV9lChoBmgJaA9DCFCnPLqRPmLAlIaUUpRoFUtBaBZHQIxKEEHMUyp1fZQoaAZoCWgPQwiqudxgqGpbwJSGlFKUaBVLUmgWR0CMShBBzFMqdX2UKGgGaAloD0MIr1+wG7YcccCUhpRSlGgVS1toFkdAjEs7SJCSinV9lChoBmgJaA9DCGBZaVKKWHHAlIaUUpRoFUtXaBZHQIxLoavRqoJ1fZQoaAZoCWgPQwjDoEyjSVt2wJSGlFKUaBVLZWgWR0CMS9oCdSVGdX2UKGgGaAloD0MI6DI1Cd5RYcCUhpRSlGgVS05oFkdAjEwIFmnO0XV9lChoBmgJaA9DCGHij6JOzXHAlIaUUpRoFUtuaBZHQIxMmXqqwQl1fZQoaAZoCWgPQwhJZB9kWXg9wJSGlFKUaBVLQ2gWR0CMTMitaIN3dX2UKGgGaAloD0MI6x1uh4YIYcCUhpRSlGgVS3BoFkdAjEzfKQq7RXV9lChoBmgJaA9DCNMuppnuO3vAlIaUUpRoFUthaBZHQIxNMxqO9391fZQoaAZoCWgPQwiNX3glyTNjwJSGlFKUaBVLV2gWR0CMTUWIoE0SdX2UKGgGaAloD0MIuqC+ZU5LaMCUhpRSlGgVS0toFkdAjE1eF+NLlHV9lChoBmgJaA9DCBIR/kWQJnDAlIaUUpRoFUttaBZHQIxNuDOC5Et1fZQoaAZoCWgPQwht/l91ZKNvwJSGlFKUaBVLYmgWR0CMTf/qgRK6dX2UKGgGaAloD0MIt0QuOINJXMCUhpRSlGgVS2xoFkdAjE4zF2mpEXV9lChoBmgJaA9DCHr/HyfMVmrAlIaUUpRoFUtAaBZHQIxO4S8J2Md1fZQoaAZoCWgPQwi9GMqJ9pNgwJSGlFKUaBVLgWgWR0CMTxJQLux9dX2UKGgGaAloD0MIDyvc8pGFZcCUhpRSlGgVS09oFkdAjE8kxIre7HV9lChoBmgJaA9DCLg7a7ddi1jAlIaUUpRoFUt0aBZHQIxPMRBeHBV1ZS4="
|
70 |
+
},
|
71 |
+
"ep_success_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
74 |
+
},
|
75 |
+
"_n_updates": 10,
|
76 |
+
"n_steps": 2048,
|
77 |
+
"gamma": 0.99,
|
78 |
+
"gae_lambda": 0.95,
|
79 |
+
"ent_coef": 0.0,
|
80 |
+
"vf_coef": 0.5,
|
81 |
+
"max_grad_norm": 0.5,
|
82 |
+
"batch_size": 64,
|
83 |
+
"n_epochs": 10,
|
84 |
+
"clip_range": {
|
85 |
+
":type:": "<class 'function'>",
|
86 |
+
":serialized:": "gAWVmwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGtjOlxVc2Vyc1xSYXBoYWVsXEFwcERhdGFcTG9jYWxcUHJvZ3JhbXNcUHl0aG9uXFB5dGhvbjM4XGxpYlxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDXVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
87 |
+
},
|
88 |
+
"clip_range_vf": null,
|
89 |
+
"normalize_advantage": true,
|
90 |
+
"target_kl": null
|
91 |
+
}
|
dsf/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:67701c10b1584f706830bf92d061eafc5f588dc7625010ab155a0002b1326435
|
3 |
+
size 84829
|
dsf/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:451f4eaf537e39d7e268817bd5fe1392a79be15e755501e733f9910c01bc93f3
|
3 |
+
size 43201
|
dsf/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
dsf/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Windows-10-10.0.19041-SP0 10.0.19041
|
2 |
+
Python: 3.8.0
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.10.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.22.0
|
7 |
+
Gym: 0.21.0
|
ppo-LunarLander-v2_1000_steps.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:61d553fc70d3e46fbfebedfb4c0f392c59c9e86ab0c4e5b480d7a4db719340ed
|
3 |
+
size 143805
|
ppo-LunarLander-v2_1000_steps/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2_1000_steps/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x000002445D88D820>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x000002445D88D8B0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x000002445D88D940>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x000002445D88D9D0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x000002445D88DA60>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x000002445D88DAF0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x000002445D88DB80>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x000002445D88DC10>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x000002445D88DCA0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x000002445D88DD30>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x000002445D88DDC0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x000002445D884F30>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 32768,
|
46 |
+
"_total_timesteps": 10000.0,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652307042.1220438,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVmwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGtjOlxVc2Vyc1xSYXBoYWVsXEFwcERhdGFcTG9jYWxcUHJvZ3JhbXNcUHl0aG9uXFB5dGhvbjM4XGxpYlxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDXVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADsXr7BYMk/wCdRv4IWnLwBjgY/3oD0PgAAAAAAAAAAmuDrPbcvvT9GQfA+X8a4vTGlmL3Ptqu9AAAAAAAAAACaxBe99ua1PxJmQr+3aOE94/5tPSp6iz4AAAAAAAAAAJrYOT3Fbrc/0t8pP/BLxD0YGyi9LcH8vQAAAAAAAAAAWqDtvbQtBz8Gpoi+MISKv2mPDTzqYh0+AAAAAAAAAABm3r28FYBMP2aq27z6v4a/PgguvrOgTr4AAAAAAAAAAMaMeL69OT8/FTT3vjerUL80Aa099vUWvQAAAAAAAAAAGv8bvdqesD8R3sG+mm5nvpnucD1O9xY+AAAAAAAAAAAz2xG8fCpmP+3Stb2vqWC/gAsvPnzwDT4AAAAAAAAAANiosL712Us+YFckvwIvnb9RABg9/bpSvgAAAAAAAAAAWprbPcg6vT9KopA+b/VhvtIEnb7+j8q9AAAAAAAAAACNvyu+4doFP5d8ir7r5oG/7+wSPrq7qT4AAAAAAAAAAGaimjsgirI/clvmPd7hX76GQEO6ujWdPAAAAAAAAAAAgArKvZYzBD/dXWK+xXuav8DbtD1i3M+7AAAAAAAAAADzwuk9Q1uoP8/fIzyksB6/FDavPhLrijwAAAAAAAAAADrZpT70Xra8pWOruuFT5DolSs29eGkfvAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -2.2768,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIbD1DOKYYfsCUhpRSlIwBbJRLY4wBdJRHQIw1xprULD11fZQoaAZoCWgPQwjJVwIpsYhnwJSGlFKUaBVLVGgWR0CMNdDYywfRdX2UKGgGaAloD0MIescpOpK8U8CUhpRSlGgVS21oFkdAjDXMzl90BHV9lChoBmgJaA9DCCDURQpljTBAlIaUUpRoFUtfaBZHQIw2Mx9G7SR1fZQoaAZoCWgPQwgRyCWOPPlZwJSGlFKUaBVLQmgWR0CMNrAUtZmqdX2UKGgGaAloD0MIyjLEsS55XMCUhpRSlGgVS0RoFkdAjDbOkk8ifXV9lChoBmgJaA9DCOVk4lbBS3XAlIaUUpRoFUt3aBZHQIw28vPC2tx1fZQoaAZoCWgPQwjmsWZkUCBxwJSGlFKUaBVLZGgWR0CMNzlFtsN2dX2UKGgGaAloD0MIUps4ud+qWMCUhpRSlGgVSztoFkdAjDgq8lHBlHV9lChoBmgJaA9DCIpz1NEx5XLAlIaUUpRoFUt6aBZHQIw4lXNke6t1fZQoaAZoCWgPQwgRqP5BJJtjwJSGlFKUaBVLXmgWR0CMOLxqfvnbdX2UKGgGaAloD0MIcXMqGQA4X8CUhpRSlGgVS11oFkdAjDkVPepGWnV9lChoBmgJaA9DCLKfxVKkGmLAlIaUUpRoFUtdaBZHQIw5LeVLSNR1fZQoaAZoCWgPQwjdRC3NretUwJSGlFKUaBVLQ2gWR0CMOT433pOfdX2UKGgGaAloD0MIahfTTPeqEUCUhpRSlGgVS4RoFkdAjDlZZB9kSXV9lChoBmgJaA9DCA2mYfiI6WbAlIaUUpRoFUtWaBZHQIw5gf8uSOl1fZQoaAZoCWgPQwj7O9ujt1xiwJSGlFKUaBVLWmgWR0CMOYUcn3L3dX2UKGgGaAloD0MIeekmMQi+UsCUhpRSlGgVS0VoFkdAjDmj28IzFnV9lChoBmgJaA9DCNbHQ99drmDAlIaUUpRoFUtlaBZHQIw5+/Firkt1fZQoaAZoCWgPQwgKuVLPgq9twJSGlFKUaBVLUWgWR0CMOiLjxTbWdX2UKGgGaAloD0MIRUYHJOE/Y8CUhpRSlGgVS3JoFkdAjDp0xM36ynV9lChoBmgJaA9DCLfVrDO+a13AlIaUUpRoFUtraBZHQIw69B+nZTR1fZQoaAZoCWgPQwii0LLuHz5kwJSGlFKUaBVLcGgWR0CMO3zo2XLNdX2UKGgGaAloD0MIfSB551BnXcCUhpRSlGgVS0JoFkdAjDuFI/Z/TnV9lChoBmgJaA9DCL1tpkI8/2nAlIaUUpRoFUtTaBZHQIw8i6H0se51fZQoaAZoCWgPQwhW9IdmnrphwJSGlFKUaBVLUmgWR0CMPNT4tYjjdX2UKGgGaAloD0MIF0omp3Z5VsCUhpRSlGgVS3xoFkdAjDz0h/y5JHV9lChoBmgJaA9DCNy8cVKYLGHAlIaUUpRoFUtuaBZHQIw8/sVtXPt1fZQoaAZoCWgPQwhATS1bK+J2wJSGlFKUaBVLYWgWR0CMPQDSPU8WdX2UKGgGaAloD0MIl3K+2PvEbcCUhpRSlGgVS3JoFkdAjD0A08/2TXV9lChoBmgJaA9DCO+usyF/xGDAlIaUUpRoFUtraBZHQIw9UdgfEGZ1fZQoaAZoCWgPQwh6/x8nzG1owJSGlFKUaBVLSGgWR0CMPWAxSHdodX2UKGgGaAloD0MIUORJ0rV6c8CUhpRSlGgVS2toFkdAjD2l1SwW33V9lChoBmgJaA9DCMb6BiY3b3HAlIaUUpRoFUtfaBZHQIw9wHTqjah1fZQoaAZoCWgPQwig3SHFgPt1wJSGlFKUaBVLdmgWR0CMPibTc6/7dX2UKGgGaAloD0MIaVGf5I7iZsCUhpRSlGgVS2doFkdAjD5Hn2ZiNXV9lChoBmgJaA9DCIhkyLH1TnbAlIaUUpRoFUtZaBZHQIw/Fnh86WB1fZQoaAZoCWgPQwi9cVKYtw10wJSGlFKUaBVLXGgWR0CMPz9zfaYedX2UKGgGaAloD0MIV81zRD7IZMCUhpRSlGgVS3FoFkdAjD+DAJswc3V9lChoBmgJaA9DCF8IOe//XlfAlIaUUpRoFUtEaBZHQIw/ukep4r11fZQoaAZoCWgPQwhTQNr/AONkwJSGlFKUaBVLSGgWR0CMP+GmDUVjdX2UKGgGaAloD0MIWhE10eccWMCUhpRSlGgVS1doFkdAjEAIHkcS5HV9lChoBmgJaA9DCD9VhQZiiV7AlIaUUpRoFUtUaBZHQIxBCB06o2p1fZQoaAZoCWgPQwgQzxJkBAhfwJSGlFKUaBVLZ2gWR0CMQRyaNMoMdX2UKGgGaAloD0MIJXfYROYxY8CUhpRSlGgVS3RoFkdAjEGdnK4hEHV9lChoBmgJaA9DCJaWkXpPd1jAlIaUUpRoFUtDaBZHQIxB2w1R+Bp1fZQoaAZoCWgPQwh1IVZ/hMxjwJSGlFKUaBVLcmgWR0CMQgYSg5BDdX2UKGgGaAloD0MI4SnkSj3JWcCUhpRSlGgVS3loFkdAjEJDfvWpZXV9lChoBmgJaA9DCN0LzApFtWTAlIaUUpRoFUtlaBZHQIxCSagElmh1fZQoaAZoCWgPQwgSFhVxOgBiwJSGlFKUaBVLcmgWR0CMQnCJoCdSdX2UKGgGaAloD0MINPYlG4/6Z8CUhpRSlGgVS0JoFkdAjEJ6yrxRVXV9lChoBmgJaA9DCEs7NZebTWHAlIaUUpRoFUuOaBZHQIxCq+vhZQp1fZQoaAZoCWgPQwgDCvX0Ea1fwJSGlFKUaBVLQWgWR0CMQsqslsxgdX2UKGgGaAloD0MI8BZIUPzOXcCUhpRSlGgVS25oFkdAjELQzLwF1XV9lChoBmgJaA9DCB4Wak3zdV7AlIaUUpRoFUtCaBZHQIxD/epGWld1fZQoaAZoCWgPQwhLPQtC+aFowJSGlFKUaBVLdmgWR0CMREFr2xptdX2UKGgGaAloD0MIv36IDZbUYsCUhpRSlGgVSz5oFkdAjERT4L1EmnV9lChoBmgJaA9DCI5cN6U8DmTAlIaUUpRoFUtraBZHQIxEcIkZ75V1fZQoaAZoCWgPQwjDuYYZ2kxwwJSGlFKUaBVLUmgWR0CMRJmDlHSXdX2UKGgGaAloD0MI73A7NCwNWMCUhpRSlGgVS0toFkdAjEUeoLofS3V9lChoBmgJaA9DCFBwsaKGpGXAlIaUUpRoFUuKaBZHQIxFZEBsANp1fZQoaAZoCWgPQwiZKa2/pZdgwJSGlFKUaBVLSmgWR0CMRXzUZvUCdX2UKGgGaAloD0MIBaT9DzCxcMCUhpRSlGgVS0xoFkdAjEXxjSXt0HV9lChoBmgJaA9DCDCBW3fzKEBAlIaUUpRoFUtZaBZHQIxGS6+WWyF1fZQoaAZoCWgPQwgIHt/eNeBPwJSGlFKUaBVLVGgWR0CMRnKUVzp5dX2UKGgGaAloD0MI4SU49YFqY8CUhpRSlGgVS2JoFkdAjEa65oXbd3V9lChoBmgJaA9DCGzRArStWlnAlIaUUpRoFUtxaBZHQIxG8KTjebd1fZQoaAZoCWgPQwhgPe5brQ1XwJSGlFKUaBVLRGgWR0CMRzYkE9t/dX2UKGgGaAloD0MILEoJwarqcMCUhpRSlGgVS2doFkdAjEdAaNuLrHV9lChoBmgJaA9DCGGMSBTa22LAlIaUUpRoFUt2aBZHQIxHdPi1iON1fZQoaAZoCWgPQwikiuJV1jZVwJSGlFKUaBVLT2gWR0CMR9lOoHcDdX2UKGgGaAloD0MIOugSDr3FLsCUhpRSlGgVS1hoFkdAjEflmFrVOXV9lChoBmgJaA9DCNc07zhFwlnAlIaUUpRoFUs7aBZHQIxIBxJd0JZ1fZQoaAZoCWgPQwgG9S1zutdVwJSGlFKUaBVLYGgWR0CMSKakyk9EdX2UKGgGaAloD0MILgH4p1SXQMCUhpRSlGgVS1doFkdAjEjuUMXrMXV9lChoBmgJaA9DCOVEuwqp5HbAlIaUUpRoFUtPaBZHQIxI7lDF6zF1fZQoaAZoCWgPQwh+jLlriflowJSGlFKUaBVLbWgWR0CMSVzshPj5dX2UKGgGaAloD0MI/wWCABnKZsCUhpRSlGgVSz5oFkdAjElzbnHNo3V9lChoBmgJaA9DCILknUMZ9FzAlIaUUpRoFUs5aBZHQIxJcWCVbA11fZQoaAZoCWgPQwjTwI9qWG5xwJSGlFKUaBVLVWgWR0CMSasIVuaXdX2UKGgGaAloD0MI7BNAMbKMasCUhpRSlGgVS1FoFkdAjEnblaKUFHV9lChoBmgJaA9DCFCnPLqRPmLAlIaUUpRoFUtBaBZHQIxKEEHMUyp1fZQoaAZoCWgPQwiqudxgqGpbwJSGlFKUaBVLUmgWR0CMShBBzFMqdX2UKGgGaAloD0MIr1+wG7YcccCUhpRSlGgVS1toFkdAjEs7SJCSinV9lChoBmgJaA9DCGBZaVKKWHHAlIaUUpRoFUtXaBZHQIxLoavRqoJ1fZQoaAZoCWgPQwjDoEyjSVt2wJSGlFKUaBVLZWgWR0CMS9oCdSVGdX2UKGgGaAloD0MI6DI1Cd5RYcCUhpRSlGgVS05oFkdAjEwIFmnO0XV9lChoBmgJaA9DCGHij6JOzXHAlIaUUpRoFUtuaBZHQIxMmXqqwQl1fZQoaAZoCWgPQwhJZB9kWXg9wJSGlFKUaBVLQ2gWR0CMTMitaIN3dX2UKGgGaAloD0MI6x1uh4YIYcCUhpRSlGgVS3BoFkdAjEzfKQq7RXV9lChoBmgJaA9DCNMuppnuO3vAlIaUUpRoFUthaBZHQIxNMxqO9391fZQoaAZoCWgPQwiNX3glyTNjwJSGlFKUaBVLV2gWR0CMTUWIoE0SdX2UKGgGaAloD0MIuqC+ZU5LaMCUhpRSlGgVS0toFkdAjE1eF+NLlHV9lChoBmgJaA9DCBIR/kWQJnDAlIaUUpRoFUttaBZHQIxNuDOC5Et1fZQoaAZoCWgPQwht/l91ZKNvwJSGlFKUaBVLYmgWR0CMTf/qgRK6dX2UKGgGaAloD0MIt0QuOINJXMCUhpRSlGgVS2xoFkdAjE4zF2mpEXV9lChoBmgJaA9DCHr/HyfMVmrAlIaUUpRoFUtAaBZHQIxO4S8J2Md1fZQoaAZoCWgPQwi9GMqJ9pNgwJSGlFKUaBVLgWgWR0CMTxJQLux9dX2UKGgGaAloD0MIDyvc8pGFZcCUhpRSlGgVS09oFkdAjE8kxIre7HV9lChoBmgJaA9DCLg7a7ddi1jAlIaUUpRoFUt0aBZHQIxPMRBeHBV1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 10,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVmwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGtjOlxVc2Vyc1xSYXBoYWVsXEFwcERhdGFcTG9jYWxcUHJvZ3JhbXNcUHl0aG9uXFB5dGhvbjM4XGxpYlxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDXVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2_1000_steps/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:67701c10b1584f706830bf92d061eafc5f588dc7625010ab155a0002b1326435
|
3 |
+
size 84829
|
ppo-LunarLander-v2_1000_steps/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:451f4eaf537e39d7e268817bd5fe1392a79be15e755501e733f9910c01bc93f3
|
3 |
+
size 43201
|
ppo-LunarLander-v2_1000_steps/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2_1000_steps/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Windows-10-10.0.19041-SP0 10.0.19041
|
2 |
+
Python: 3.8.0
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.10.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.22.0
|
7 |
+
Gym: 0.21.0
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -19.393925566464894, "std_reward": 48.887404496935225, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-12T00:33:30.230005"}
|