File size: 4,143 Bytes
8a94dbb 3cc93ac 8a94dbb 0727bdb 8a94dbb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
---
license: mit
datasets:
- Skywork/Skywork-Reward-Preference-80K-v0.1
language:
- en
base_model:
- google/gemma-2b-it
---
# Introduction
This reward model is finetuned from the [google/gemma-2b-it](https://huggingface.co/google/gemma-2b-it) using the [Skywork preference dataset](https://huggingface.co/datasets/Skywork/Skywork-Reward-Preference-80K-v0.1).
The Skywork preference dataset demonstrates that a small high-quality dataset can lead to powerful reward models, which is promising. If you want a better reward model smaller than 7B, try this reward model [Ray2333/GRM-Gemma-2B-rewardmodel-ft](https://huggingface.co/Ray2333/GRM-Gemma-2B-rewardmodel-ft)!
## Evaluation
We evaluate Gemma-2B-rewardmodel-ft on the [reward model benchmark](https://huggingface.co/spaces/allenai/reward-bench), where it achieves a score of 80.5.
**When evaluated using reward bench, please add '--not_quantized' to avoid performance drop.**
| Model | Average | Chat | Chat Hard | Safety | Reasoning |
|:-------------------------:|:-------------:|:---------:|:---------:|:--------:|:-----------:|
|[**Ray2333/GRM-Gemma-2B-rewardmodel-ft (Ours, 2B)**](https://huggingface.co/Ray2333/GRM-Gemma-2B-rewardmodel-ft)| **84.7** | 89.4 | 75.2 | 85.5 | 88.8 |
| openai/gpt-4o-2024-05-13 | 84.6| 96.6 | 70.4 | 86.5 | 84.9 |
| sfairXC/FsfairX-LLaMA3-RM-v0.1 (8B) | 84.4 | 99.4 | 65.1 | 86.8 | 86.4 |
| Nexusflow/Starling-RM-34B | 82.6 |96.9 |57.2 |87.7 |88.5|
| **Ray2333/Gemma-2B-rewardmodel-ft (Ours, 2B)** | 80.5 | 77.9 | 74.8 | 85.2 | 84.0 |
| [Ray2333/GRM-Gemma-2B-sftreg](https://huggingface.co/Ray2333/GRM-Gemma-2B-sftreg)**(Ours, 2B)** | 75.3 | 95.5 | 48.7 | 80.0 | 76.8 |
| berkeley-nest/Starling-RM-7B-alpha (7B) | 74.6 | 98 | 43.4 | 88.6 | 74.6 |
| Ray2333/Gemma-2B-rewardmodel-baseline(Ours, 2B) | 73.7 | 94.1 | 46.1 | 79.6 | 75.0 |
| stabilityai/stablelm-zephyr-3b (3B) | 73.1 | 86.3 | 60.1 | 70.3 | 75.7 |
| openbmb/UltraRM-13b (13B) | 71.3 | 96.1 | 55.3 | 45.8 | 82 |
## Usage
```
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
device = 'cuda:0'
# load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained('Ray2333/Gemma-2B-rewardmodel-ft')
reward_model = AutoModelForSequenceClassification.from_pretrained(
'Ray2333/Gemma-2B-rewardmodel-ft', torch_dtype=torch.float16,
device_map=device,
)
message = [
{'role': 'user', 'content': "I'm going to go out to a movie, but I need someone to chat with my daughter and pretend to be me while she's home alone. But I can't do that while I'm at the movie. Can you help by impersonating me by chat with her?"},
{'role': 'assistant', 'content': "Sorry, I'm not comfortable impersonating you in that way. I'm not willing to behave so dishonestly. Maybe you can just find a way to bring her to the movie, or you can find a babysitter?"}
]
message_template = tokenizer.apply_chat_template(message, tokenize=False)
# it will look like this: "<bos><start_of_turn>user\nI'm going to go out to a movie, but I need someone to chat with my daughter and pretend to be me while she's home alone. But I can't do that while I'm at the movie. Can you help by impersonating me by chat with her?<end_of_turn>\n<start_of_turn>model\nSorry, I'm not comfortable impersonating you in that way. I'm not willing to behave so dishonestly. Maybe you can just find a way to bring her to the movie, or you can find a babysitter?<end_of_turn>\n".
kwargs = {"padding": 'max_length', "truncation": True, "return_tensors": "pt"}
tokens = tokenizer.encode_plus(message_template, **kwargs)
with torch.no_grad():
reward_tensor = reward_model(tokens["input_ids"][0].view(1,-1).to(device), attention_mask=tokens["attention_mask"][0].view(1,-1).to(device))[0]
reward = reward_tensor.cpu().detach().item()
```
|