pneumonia / app.py
Rcronshaw's picture
Create app.py
393c1c6
raw
history blame
427 Bytes
import gradio as gr
from transformers import pipeline
pipeline = pipeline(task="image-classification", model="Rcronshaw/pneumonia")
def predict(image):
predictions = pipeline(image)
return {p["label"]: p["score"] for p in predictions}
gr.Interface(
predict,
inputs=gr.inputs.Image(label="Upload CXR", type="filepath"),
outputs=gr.outputs.Label(num_top_classes=2),
title="Normal or pneumonia?",
).launch()