File size: 6,606 Bytes
435eb54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
#!/usr/bin/env python
# coding: utf-8
# # Creating a Zero-Shot classifier based on BETO
#
# This notebook/script fine-tunes a BETO (spanish bert, 'dccuchile/bert-base-spanish-wwm-cased') model on the spanish XNLI dataset.
# The fine-tuned model can then be fed to a Huggingface ZeroShot pipeline to obtain a ZeroShot classifier.
# In[ ]:
from datasets import load_dataset, Dataset, load_metric, load_from_disk
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import Trainer, TrainingArguments
import torch
from pathlib import Path
# from ray import tune
# from ray.tune.suggest.hyperopt import HyperOptSearch
# from ray.tune.schedulers import ASHAScheduler
# # Prepare the datasets
# In[ ]:
xnli_es = load_dataset("xnli", "es")
# In[ ]:
xnli_es
# >joeddav
# >Aug '20
# >
# >@rsk97 In addition, just make sure the model used is trained on an NLI task and that the **last output label corresponds to entailment** while the **first output label corresponds to contradiction**.
#
# => We change the original `label` and use the `labels` column, which is required by a `AutoModelForSequenceClassification`
# In[ ]:
# see markdown above
def switch_label_id(row):
if row["label"] == 0:
return {"labels": 2}
elif row["label"] == 2:
return {"labels": 0}
else:
return {"labels": 1}
for split in xnli_es:
xnli_es[split] = xnli_es[split].map(switch_label_id)
# ## Tokenize data
# In[ ]:
tokenizer = AutoTokenizer.from_pretrained("dccuchile/bert-base-spanish-wwm-cased")
# In a first attempt i padded all data to the maximum length of the dataset (379). However, the traninig takes substanially longer with all the paddings, it's better to pass in the tokenizer to the `Trainer` and let the `Trainer` do the padding on a batch level.
# In[ ]:
# Figured out max length of the dataset manually
# max_length = 379
def tokenize(row):
return tokenizer(row["premise"], row["hypothesis"], truncation=True, max_length=512) #, padding="max_length", max_length=max_length)
# In[ ]:
data = {}
for split in xnli_es:
data[split] = xnli_es[split].map(
tokenize,
remove_columns=["hypothesis", "premise", "label"],
batched=True,
batch_size=128
)
# In[ ]:
train_path = str(Path("./train_ds").absolute())
valid_path = str(Path("./valid_ds").absolute())
data["train"].save_to_disk(train_path)
data["validation"].save_to_disk(valid_path)
# In[ ]:
# We can use `datasets.Dataset`s directly
# class XnliDataset(torch.utils.data.Dataset):
# def __init__(self, data):
# self.data = data
# def __getitem__(self, idx):
# item = {key: torch.tensor(val) for key, val in self.data[idx].items()}
# return item
# def __len__(self):
# return len(self.data)
# In[ ]:
def trainable(config):
metric = load_metric("xnli", "es")
def compute_metrics(eval_pred):
predictions, labels = eval_pred
predictions = predictions.argmax(axis=-1)
return metric.compute(predictions=predictions, references=labels)
model = AutoModelForSequenceClassification.from_pretrained("dccuchile/bert-base-spanish-wwm-cased", num_labels=3)
training_args = TrainingArguments(
output_dir='./results', # output directory
do_train=True,
do_eval=True,
evaluation_strategy="steps",
eval_steps=500,
load_best_model_at_end=True,
metric_for_best_model="eval_accuracy",
num_train_epochs=config["epochs"], # total number of training epochs
per_device_train_batch_size=config["batch_size"], # batch size per device during training
per_device_eval_batch_size=config["batch_size_eval"], # batch size for evaluation
warmup_steps=config["warmup_steps"], # 500
weight_decay=config["weight_decay"], # 0.001 # strength of weight decay
learning_rate=config["learning_rate"], # 5e-05
logging_dir='./logs', # directory for storing logs
logging_steps=250,
#save_steps=500, # ignored when using load_best_model_at_end
save_total_limit=10,
no_cuda=False,
disable_tqdm=True,
)
# train_dataset = XnliDataset(load_from_disk(config["train_path"]))
# valid_dataset = XnliDataset(load_from_disk(config["valid_path"]))
train_dataset = load_from_disk(config["train_path"])
valid_dataset = load_from_disk(config["valid_path"])
trainer = Trainer(
model,
tokenizer=tokenizer,
args=training_args, # training arguments, defined above
train_dataset=train_dataset, # training dataset
eval_dataset=valid_dataset, # evaluation dataset
compute_metrics=compute_metrics,
)
trainer.train()
# In[ ]:
trainable(
{
"train_path": train_path,
"valid_path": valid_path,
"batch_size": 16,
"batch_size_eval": 64,
"warmup_steps": 500,
"weight_decay": 0.001,
"learning_rate": 5e-5,
"epochs": 3,
}
)
# # HPO
# In[ ]:
# config = {
# "train_path": train_path,
# "valid_path": valid_path,
# "warmup_steps": tune.randint(0, 500),
# "weight_decay": tune.loguniform(0.00001, 0.1),
# "learning_rate": tune.loguniform(5e-6, 5e-4),
# "epochs": tune.choice([2, 3, 4])
# }
# # In[ ]:
# analysis = tune.run(
# trainable,
# config=config,
# metric="eval_acc",
# mode="max",
# #search_alg=HyperOptSearch(),
# #scheduler=ASHAScheduler(),
# num_samples=1,
# )
# # In[ ]:
# def model_init():
# return AutoModelForSequenceClassification.from_pretrained("dccuchile/bert-base-spanish-wwm-cased", num_labels=3)
# trainer = Trainer(
# args=training_args, # training arguments, defined above
# train_dataset=train_dataset, # training dataset
# eval_dataset=valid_dataset, # evaluation dataset
# model_init=model_init,
# compute_metrics=compute_metrics,
# )
# # In[ ]:
# best_trial = trainer.hyperparameter_search(
# direction="maximize",
# backend="ray",
# n_trials=2,
# # Choose among many libraries:
# # https://docs.ray.io/en/latest/tune/api_docs/suggestion.html
# search_alg=HyperOptSearch(mode="max", metric="accuracy"),
# # Choose among schedulers:
# # https://docs.ray.io/en/latest/tune/api_docs/schedulers.html
# scheduler=ASHAScheduler(mode="max", metric="accuracy"),
# local_dir="tune_runs",
# )
|