David commited on
Commit
d78fdb9
1 Parent(s): e023a6a

Add model card

Browse files
Files changed (1) hide show
  1. README.md +51 -0
README.md ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: es
3
+ tags:
4
+ - zero-shot-classification
5
+ - nli
6
+ - pytorch
7
+ datasets:
8
+ - xnli
9
+ license: mit
10
+ pipeline_tag: zero-shot-classification
11
+ widget:
12
+ - text: "El autor se perfila, a los 50 años de su muerte, como uno de los grandes de su siglo"
13
+ candidate_labels: "cultura, sociedad, economia, salud, deportes"
14
+ ---
15
+
16
+ # bert-base-spanish-wwm-cased-xnli
17
+
18
+ ## Model description
19
+
20
+ This model is a fine-tuned version of the [spanish BERT model](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased) with the Spanish portion of the XNLI dataset. You can have a look at the [training script](https://huggingface.co/Recognai/bert-base-spanish-wwm-cased-xnli/blob/main/zeroshot_training_script.py) for details of the training.
21
+
22
+ ### How to use
23
+
24
+ You can use this model with Hugging Face's [zero-shot-classification pipeline](https://discuss.huggingface.co/t/new-pipeline-for-zero-shot-text-classification/681):
25
+ ```python
26
+ from transformers import pipeline
27
+ classifier = pipeline("zero-shot-classification",
28
+ model="Recognai/bert-base-spanish-wwm-cased-xnli")
29
+
30
+ classifier(
31
+ "El autor se perfila, a los 50 años de su muerte, como uno de los grandes de su siglo",
32
+ candidate_labels=["cultura", "sociedad", "economia", "salud", "deportes"]
33
+ )
34
+ """output
35
+ {'sequence': 'El autor se perfila, a los 50 años de su muerte, como uno de los grandes de su siglo',
36
+ 'labels': ['cultura', 'sociedad', 'economia', 'salud', 'deportes'],
37
+ 'scores': [0.38897448778152466,
38
+ 0.22997373342514038,
39
+ 0.1658431738615036,
40
+ 0.1205764189362526,
41
+ 0.09463217109441757]}
42
+ """
43
+ ```
44
+ ## Eval results
45
+
46
+
47
+ Accuracy for the test set:
48
+
49
+ | | XNLI-es |
50
+ |-----------------------------|---------|
51
+ |bert-base-spanish-wwm-cased-xnli | 79.9% |