File size: 2,499 Bytes
d359860 75e36c6 d359860 75e36c6 d359860 75e36c6 d359860 75e36c6 d359860 75e36c6 d359860 75e36c6 d359860 75e36c6 d359860 75e36c6 d359860 75e36c6 d359860 75e36c6 d359860 75e36c6 d359860 75e36c6 d359860 75e36c6 d359860 75e36c6 d359860 75e36c6 d359860 75e36c6 d359860 75e36c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
---
license: mit
base_model: facebook/w2v-bert-2.0
tags:
- generated_from_trainer
datasets:
- ml-superb-subset
metrics:
- wer
model-index:
- name: w2v-bert-2.0-ml-superb-xty
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: ml-superb-subset
type: ml-superb-subset
config: xty
split: test
args: xty
metrics:
- name: Wer
type: wer
value: 1.3984915147705845
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# w2v-bert-2.0-ml-superb-xty
This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the ml-superb-subset dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3981
- Wer: 1.3985
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 30
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 3.5467 | 0.8219 | 30 | 2.8636 | 1.0 |
| 2.4639 | 1.6438 | 60 | 2.5298 | 1.0094 |
| 2.38 | 2.4658 | 90 | 2.4983 | 1.1263 |
| 2.2725 | 3.2877 | 120 | 2.4866 | 1.2319 |
| 2.2608 | 4.1096 | 150 | 2.5116 | 1.5405 |
| 2.2222 | 4.9315 | 180 | 2.4588 | 1.3300 |
| 2.2609 | 5.7534 | 210 | 2.4448 | 1.3451 |
| 2.1665 | 6.5753 | 240 | 2.4270 | 1.3199 |
| 2.1703 | 7.3973 | 270 | 2.4223 | 1.3576 |
| 2.1366 | 8.2192 | 300 | 2.4054 | 1.4085 |
| 2.123 | 9.0411 | 330 | 2.4006 | 1.4180 |
| 2.1331 | 9.8630 | 360 | 2.3981 | 1.3985 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|