|
from typing import Dict, List, Any |
|
import logging |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
self.model = AutoModelForCausalLM.from_pretrained(path,device_map="cuda:0", load_in_4bit=True) |
|
self.tokenizer = AutoTokenizer.from_pretrained(path) |
|
self.tokenizer.use_default_system_prompt = False |
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
""" |
|
data args: |
|
inputs (:obj: `str`) |
|
date (:obj: `str`) |
|
Return: |
|
A :obj:`list` | `dict`: will be serialized and returned |
|
""" |
|
|
|
system_prompt = data.pop("system_prompt") |
|
message = data.pop("inputs") |
|
conversation = [] |
|
conversation.append({"role": "system", "content": system_prompt}) |
|
conversation.append({"role": "user", "content": message}) |
|
raise KeyError |
|
logging.info(str(conversation)) |
|
input_ids = self.tokenizer.apply_chat_template(conversation, return_tensors="pt") |
|
input_ids = input_ids.to(self.model.device) |
|
|
|
generate_kwargs = dict( |
|
{"input_ids": input_ids}, |
|
do_sample=True, |
|
top_p=0.9, |
|
top_k=50, |
|
temperature=0.6, |
|
num_beams=1, |
|
repetition_penalty=1.2, |
|
) |
|
return self.model.generate(**generate_kwargs) |