--- library_name: transformers license: llama3 base_model: meta-llama/Meta-Llama-3-8B tags: - axolotl - generated_from_trainer model-index: - name: L3-Pneuma-8B results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: meta-llama/Meta-Llama-3-8B load_in_8bit: false load_in_4bit: false strict: false load_in_8bit: false load_in_4bit: false strict: false datasets: - path: Kquant03/Sandevistan_Reformat type: customllama3_stan dataset_prepared_path: last_run_prepared val_set_size: 0.05 output_dir: ./outputs/out max_steps: 80000 fix_untrained_tokens: true sequence_len: 4096 sample_packing: true pad_to_sequence_len: true wandb_project: Pneuma wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 16 micro_batch_size: 8 num_epochs: 1 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 0.00001 max_grad_norm: 1 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: unsloth early_stopping_patience: resume_from_checkpoint: logging_steps: 1 xformers_attention: flash_attention: true eval_sample_packing: false plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_swiglu: true liger_fused_linear_cross_entropy: true hub_model_id: Replete-AI/L3-Pneuma-8B hub_strategy: every_save warmup_steps: 10 evals_per_epoch: 3 eval_table_size: saves_per_epoch: 3 debug: deepspeed: weight_decay: 0.1 fsdp: fsdp_config: special_tokens: bos_token: "<|begin_of_text|>" eos_token: "<|end_of_text|>" pad_token: "<|end_of_text|>" tokens: ```

# L3-Pneuma-8B This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on the [Sandevistan](https://huggingface.co/datasets/Replete-AI/Sandevistan) dataset. It achieves the following results on the evaluation set: - Loss: 2.7381 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 743 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.0378 | 0.0013 | 1 | 3.0437 | | 0.6816 | 0.3334 | 248 | 2.7341 | | 0.6543 | 0.6667 | 496 | 2.7381 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.3.1+cu121 - Datasets 2.21.0 - Tokenizers 0.20.1