Daniil Larionov commited on
Commit
59adbd3
1 Parent(s): 3d62abc

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +85 -0
README.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ model-index:
5
+ - name: rubert-base-srl-seqlabeling
6
+ results: []
7
+ ---
8
+
9
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
10
+ should probably proofread and complete it, then remove this comment. -->
11
+
12
+ # rubert-base-srl-seqlabeling
13
+
14
+ This model is a fine-tuned version of [./ruBert-base/](https://huggingface.co/./ruBert-base/) on an unknown dataset.
15
+ It achieves the following results on the evaluation set:
16
+ - Loss: 0.2417
17
+ - Predicate Precision: 0.9323
18
+ - Predicate Recall: 0.9612
19
+ - Predicate F1: 0.9466
20
+ - Predicate Number: 129
21
+ - Инструмент Precision: 0.0
22
+ - Инструмент Recall: 0.0
23
+ - Инструмент F1: 0.0
24
+ - Инструмент Number: 1
25
+ - Каузатор Precision: 0.7667
26
+ - Каузатор Recall: 0.6301
27
+ - Каузатор F1: 0.6917
28
+ - Каузатор Number: 73
29
+ - Экспериенцер Precision: 0.6939
30
+ - Экспериенцер Recall: 0.8293
31
+ - Экспериенцер F1: 0.7556
32
+ - Экспериенцер Number: 41
33
+ - Overall Precision: 0.8430
34
+ - Overall Recall: 0.8361
35
+ - Overall F1: 0.8395
36
+ - Overall Accuracy: 0.9584
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 5e-05
56
+ - train_batch_size: 16
57
+ - eval_batch_size: 8
58
+ - seed: 42
59
+ - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-06
60
+ - lr_scheduler_type: cosine
61
+ - lr_scheduler_warmup_ratio: 0.06
62
+ - num_epochs: 10.0
63
+
64
+ ### Training results
65
+
66
+ | Training Loss | Epoch | Step | Validation Loss | Predicate Precision | Predicate Recall | Predicate F1 | Predicate Number | Инструмент Precision | Инструмент Recall | Инструмент F1 | Инструмент Number | Каузатор Precision | Каузатор Recall | Каузатор F1 | Каузатор Number | Экспериенцер Precision | Экспериенцер Recall | Экспериенцер F1 | Экспериенцер Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
67
+ |:-------------:|:-----:|:----:|:---------------:|:-------------------:|:----------------:|:------------:|:----------------:|:--------------------:|:-----------------:|:-------------:|:-----------------:|:------------------:|:---------------:|:-----------:|:---------------:|:----------------------:|:-------------------:|:---------------:|:-------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
68
+ | 0.2462 | 1.0 | 54 | 0.1554 | 0.8897 | 1.0 | 0.9416 | 129 | 0.0 | 0.0 | 0.0 | 1 | 0.7708 | 0.5068 | 0.6116 | 73 | 0.6047 | 0.6341 | 0.6190 | 41 | 0.8136 | 0.7869 | 0.8 | 0.9486 |
69
+ | 0.1863 | 2.0 | 108 | 0.1268 | 0.9014 | 0.9922 | 0.9446 | 129 | 0.0 | 0.0 | 0.0 | 1 | 0.8444 | 0.5205 | 0.6441 | 73 | 0.6829 | 0.6829 | 0.6829 | 41 | 0.8509 | 0.7951 | 0.8220 | 0.9557 |
70
+ | 0.0668 | 3.0 | 162 | 0.1288 | 0.9338 | 0.9845 | 0.9585 | 129 | 0.0 | 0.0 | 0.0 | 1 | 0.8148 | 0.6027 | 0.6929 | 73 | 0.6957 | 0.7805 | 0.7356 | 41 | 0.8602 | 0.8320 | 0.8458 | 0.9600 |
71
+ | 0.039 | 4.0 | 216 | 0.1695 | 0.9007 | 0.9845 | 0.9407 | 129 | 0.0 | 0.0 | 0.0 | 1 | 0.8298 | 0.5342 | 0.6500 | 73 | 0.6441 | 0.9268 | 0.76 | 41 | 0.8259 | 0.8361 | 0.8310 | 0.9557 |
72
+ | 0.0187 | 5.0 | 270 | 0.1955 | 0.9323 | 0.9612 | 0.9466 | 129 | 0.0 | 0.0 | 0.0 | 1 | 0.75 | 0.5753 | 0.6512 | 73 | 0.7105 | 0.6585 | 0.6835 | 41 | 0.8502 | 0.7910 | 0.8195 | 0.9551 |
73
+ | 0.0216 | 6.0 | 324 | 0.2083 | 0.9394 | 0.9612 | 0.9502 | 129 | 0.0 | 0.0 | 0.0 | 1 | 0.7586 | 0.6027 | 0.6718 | 73 | 0.6829 | 0.6829 | 0.6829 | 41 | 0.8485 | 0.8033 | 0.8253 | 0.9562 |
74
+ | 0.0176 | 7.0 | 378 | 0.2203 | 0.9323 | 0.9612 | 0.9466 | 129 | 0.0 | 0.0 | 0.0 | 1 | 0.7273 | 0.6575 | 0.6906 | 73 | 0.68 | 0.8293 | 0.7473 | 41 | 0.8273 | 0.8443 | 0.8357 | 0.9578 |
75
+ | 0.0037 | 8.0 | 432 | 0.2313 | 0.9323 | 0.9612 | 0.9466 | 129 | 0.0 | 0.0 | 0.0 | 1 | 0.7541 | 0.6301 | 0.6866 | 73 | 0.6809 | 0.7805 | 0.7273 | 41 | 0.8382 | 0.8279 | 0.8330 | 0.9567 |
76
+ | 0.0089 | 9.0 | 486 | 0.2409 | 0.9323 | 0.9612 | 0.9466 | 129 | 0.0 | 0.0 | 0.0 | 1 | 0.7705 | 0.6438 | 0.7015 | 73 | 0.6939 | 0.8293 | 0.7556 | 41 | 0.8436 | 0.8402 | 0.8419 | 0.9589 |
77
+ | 0.0043 | 10.0 | 540 | 0.2417 | 0.9323 | 0.9612 | 0.9466 | 129 | 0.0 | 0.0 | 0.0 | 1 | 0.7667 | 0.6301 | 0.6917 | 73 | 0.6939 | 0.8293 | 0.7556 | 41 | 0.8430 | 0.8361 | 0.8395 | 0.9584 |
78
+
79
+
80
+ ### Framework versions
81
+
82
+ - Transformers 4.13.0.dev0
83
+ - Pytorch 1.10.0+cu102
84
+ - Datasets 1.15.1
85
+ - Tokenizers 0.10.3