Quantization made by Richard Erkhov.
Replete-LLM-V2.5-Qwen-14b - GGUF
- Model creator: https://huggingface.co/Replete-AI/
- Original model: https://huggingface.co/Replete-AI/Replete-LLM-V2.5-Qwen-14b/
Original model description:
license: apache-2.0 library_name: transformers base_model: - Qwen/Qwen2.5-14B-Instruct model-index: - name: Replete-LLM-V2.5-Qwen-14b results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 58.4 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Replete-AI/Replete-LLM-V2.5-Qwen-14b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 49.39 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Replete-AI/Replete-LLM-V2.5-Qwen-14b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 15.63 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Replete-AI/Replete-LLM-V2.5-Qwen-14b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 16.22 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Replete-AI/Replete-LLM-V2.5-Qwen-14b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 18.83 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Replete-AI/Replete-LLM-V2.5-Qwen-14b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 48.62 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Replete-AI/Replete-LLM-V2.5-Qwen-14b name: Open LLM Leaderboard
Replete-LLM-V2.5-Qwen-14b
Replete-LLM-V2.5-Qwen-14b is a continues finetuned version of Qwen2.5-14B. I noticed recently that the Qwen team did not learn from my methods of continuous finetuning, the great benefits, and no downsides of it. So I took it upon myself to merge the instruct model with the base model myself using the Ties merge method
This version of the model shows higher performance than the original instruct and base models.
Quants:
GGUF: https://huggingface.co/bartowski/Replete-LLM-V2.5-Qwen-14b-GGUF
Benchmarks:
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 34.52 |
IFEval (0-Shot) | 58.40 |
BBH (3-Shot) | 49.39 |
MATH Lvl 5 (4-Shot) | 15.63 |
GPQA (0-shot) | 16.22 |
MuSR (0-shot) | 18.83 |
MMLU-PRO (5-shot) | 48.62 |