File size: 7,506 Bytes
327645a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
gemma-2b-orpo - bnb 8bits
- Model creator: https://huggingface.co/anakin87/
- Original model: https://huggingface.co/anakin87/gemma-2b-orpo/
Original model description:
---
license: other
license_name: gemma-terms-of-use
license_link: https://ai.google.dev/gemma/terms
library_name: transformers
base_model: google/gemma-2b
tags:
- trl
- orpo
- generated_from_trainer
model-index:
- name: gemma-2b-orpo
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 49.15
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=anakin87%2Fgemma-2b-orpo
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 73.72
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=anakin87%2Fgemma-2b-orpo
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 38.52
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=anakin87%2Fgemma-2b-orpo
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 44.53
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=anakin87%2Fgemma-2b-orpo
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.33
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=anakin87%2Fgemma-2b-orpo
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 13.87
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=anakin87%2Fgemma-2b-orpo
name: Open LLM Leaderboard
datasets:
- alvarobartt/dpo-mix-7k-simplified
language:
- en
---
<img src="./assets/gemma-2b-orpo.png" width="450"></img>
# gemma-2b-orpo
This is an ORPO fine-tune of [google/gemma-2b](https://huggingface.co/google/gemma-2b) with
[`alvarobartt/dpo-mix-7k-simplified`](https://huggingface.co/datasets/alvarobartt/dpo-mix-7k-simplified).
**โก Quantized version (GGUF)**: https://huggingface.co/anakin87/gemma-2b-orpo-GGUF
## ORPO
[ORPO (Odds Ratio Preference Optimization)](https://arxiv.org/abs/2403.07691) is a new training paradigm that combines the usually separated phases
of SFT (Supervised Fine-Tuning) and Preference Alignment (usually performed with RLHF or simpler methods like DPO).
- Faster training
- Less memory usage (no reference model needed)
- Good results!
## ๐ Evaluation
### Nous
gemma-2b-orpo performs well for its size on Nous' benchmark suite.
(evaluation conducted using [LLM AutoEval](https://github.com/mlabonne/llm-autoeval)).
| Model | Average | AGIEval | GPT4All | TruthfulQA | Bigbench |
|---|---:|---:|---:|---:|---:|
| [**anakin87/gemma-2b-orpo**](https://huggingface.co/anakin87/gemma-2b-orpo) [๐](./assets/gemma-2b-orpo-Nous.md) | **39.45** | 23.76 | 58.25 | 44.47 | 31.32 |
| [mlabonne/Gemmalpaca-2B](https://huggingface.co/mlabonne/Gemmalpaca-2B) [๐](https://gist.github.com/mlabonne/4b638752fc3227df566f9562064cb864) | 38.39 | 24.48 | 51.22 | 47.02 | 30.85 |
| [google/gemma-2b-it](https://huggingface.co/google/gemma-2b-it) [๐](https://gist.github.com/mlabonne/db0761e74175573292acf497da9e5d95) | 36.1 | 23.76 | 43.6 | 47.64 | 29.41 |
| [google/gemma-2b](https://huggingface.co/google/gemma-2b) [๐](https://gist.github.com/mlabonne/7df1f238c515a5f63a750c8792cef59e) | 34.26 | 22.7 | 43.35 | 39.96 | 31.03 |
### [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_anakin87__gemma-2b-orpo).
By comparison, on the Open LLM Leaderboard, google/gemma-2b-it has an average of 42.75.
| Metric |Value|
|---------------------------------|----:|
|Avg. |47.35|
|AI2 Reasoning Challenge (25-Shot)|49.15|
|HellaSwag (10-Shot) |73.72|
|MMLU (5-Shot) |38.52|
|TruthfulQA (0-shot) |44.53|
|Winogrande (5-shot) |64.33|
|GSM8k (5-shot) |13.87|
## ๐ Dataset
[`alvarobartt/dpo-mix-7k-simplified`](https://huggingface.co/datasets/alvarobartt/dpo-mix-7k-simplified)
is a simplified version of [`argilla/dpo-mix-7k`](https://huggingface.co/datasets/argilla/dpo-mix-7k).
You can find more information [in the dataset card](https://huggingface.co/datasets/alvarobartt/dpo-mix-7k-simplified).
## ๐ฎ Model in action
### Usage notebook
[๐ Chat and RAG using Haystack](./notebooks/usage.ipynb)
### Simple text generation with Transformers
The model is small, so it runs smoothly on Colab. *It is also fine to load the model using quantization*.
```python
# pip install transformers accelerate
import torch
from transformers import pipeline
pipe = pipeline("text-generation", model="anakin87/gemma-2b-orpo", torch_dtype=torch.bfloat16, device_map="auto")
messages = [{"role": "user", "content": "Write a rap song on Vim vs VSCode."}]
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False)
outputs = pipe(prompt, max_new_tokens=500, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
## Training
The model was trained using HF TRL.
[๐ Training notebook](./notebooks/training.ipynb)
### Framework versions
- Transformers 4.39.1
- Pytorch 2.2.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|