RichardErkhov commited on
Commit
d2e7168
1 Parent(s): fd51590

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +94 -0
README.md ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ mamba-1.4b-hf - bnb 8bits
11
+ - Model creator: https://huggingface.co/state-spaces/
12
+ - Original model: https://huggingface.co/state-spaces/mamba-1.4b-hf/
13
+
14
+
15
+
16
+
17
+ Original model description:
18
+ ---
19
+ library_name: transformers
20
+ tags: []
21
+ ---
22
+
23
+ # Mamba
24
+
25
+ <!-- Provide a quick summary of what the model is/does. -->
26
+ This repository contains the `transfromers` compatible `mamba-2.8b`. The checkpoints are untouched, but the full `config.json` and tokenizer are pushed to this repo.
27
+
28
+ # Usage
29
+
30
+ You need to install `transformers` from `main` until `transformers=4.39.0` is released.
31
+ ```bash
32
+ pip install git+https://github.com/huggingface/transformers@main
33
+ ```
34
+
35
+ We also recommend you to install both `causal_conv_1d` and `mamba-ssm` using:
36
+
37
+ ```bash
38
+ pip install causal-conv1d>=1.2.0
39
+ pip install mamba-ssm
40
+ ```
41
+
42
+ If any of these two is not installed, the "eager" implementation will be used. Otherwise the more optimised `cuda` kernels will be used.
43
+
44
+ ## Generation
45
+ You can use the classic `generate` API:
46
+ ```python
47
+ >>> from transformers import MambaConfig, MambaForCausalLM, AutoTokenizer
48
+ >>> import torch
49
+
50
+ >>> tokenizer = AutoTokenizer.from_pretrained("state-spaces/mamba-1.4b-hf")
51
+ >>> model = MambaForCausalLM.from_pretrained("state-spaces/mamba-1.4b-hf")
52
+ >>> input_ids = tokenizer("Hey how are you doing?", return_tensors="pt")["input_ids"]
53
+
54
+ >>> out = model.generate(input_ids, max_new_tokens=10)
55
+ >>> print(tokenizer.batch_decode(out))
56
+ ["Hey how are you doing?\n\nI'm doing great.\n\nI"]
57
+ ```
58
+
59
+ ## PEFT finetuning example
60
+ In order to finetune using the `peft` library, we recommend keeping the model in float32!
61
+
62
+ ```python
63
+ from datasets import load_dataset
64
+ from trl import SFTTrainer
65
+ from peft import LoraConfig
66
+ from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments
67
+ tokenizer = AutoTokenizer.from_pretrained("state-spaces/mamba-1.4b-hf")
68
+ model = AutoModelForCausalLM.from_pretrained("state-spaces/mamba-1.4b-hf")
69
+ dataset = load_dataset("Abirate/english_quotes", split="train")
70
+ training_args = TrainingArguments(
71
+ output_dir="./results",
72
+ num_train_epochs=3,
73
+ per_device_train_batch_size=4,
74
+ logging_dir='./logs',
75
+ logging_steps=10,
76
+ learning_rate=2e-3
77
+ )
78
+ lora_config = LoraConfig(
79
+ r=8,
80
+ target_modules=["x_proj", "embeddings", "in_proj", "out_proj"],
81
+ task_type="CAUSAL_LM",
82
+ bias="none"
83
+ )
84
+ trainer = SFTTrainer(
85
+ model=model,
86
+ tokenizer=tokenizer,
87
+ args=training_args,
88
+ peft_config=lora_config,
89
+ train_dataset=dataset,
90
+ dataset_text_field="quote",
91
+ )
92
+ trainer.train()
93
+ ```
94
+