File size: 20,097 Bytes
2f88e34 6549220 2f88e34 6549220 2f88e34 6549220 2f88e34 6549220 2f88e34 6549220 2f88e34 6549220 2f88e34 6549220 2f88e34 6549220 2f88e34 6549220 2f88e34 6549220 2f88e34 6549220 2f88e34 6549220 2f88e34 6549220 2f88e34 6549220 2f88e34 6549220 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 |
# A BERT model that
# - has embedding projector when embedding_size != hiddne_size, like ELECTRA
# - the attention use one linear projection to generate query, key, value at once to get faster
# - is able to choose rotary position embedding
from copy import deepcopy
import math
import torch
from torch import nn
import torch.nn.functional as F
from transformers import PreTrainedModel
from configuration_tsp import TSPConfig
class TSPPreTrainedModel(PreTrainedModel):
config_class = TSPConfig
base_model_prefix = "backbone"
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=0.02)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=0.02)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
# ====================================
# Pretraining Model
# ====================================
class TSPModelForPreTraining(TSPPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.backbone = TSPModel(config)
if config.use_electra:
mlm_config = deepcopy(config)
mlm_config.hidden_size //= config.electra_generator_size_divisor
mlm_config.intermediate_size //= config.electra_generator_size_divisor
mlm_config.num_attention_heads //= config.electra_generator_size_divisor
self.mlm_backbone = TSPModel(mlm_config)
self.mlm_head = MaskedLMHead(
mlm_config, word_embeddings=self.mlm_backbone.embeddings.word_embeddings
)
self.rtd_backbone = self.backbone
self.rtd_backbone.embeddings = self.mlm_backbone.embeddings
self.rtd_head = ReplacedTokenDiscriminationHead(config)
else:
self.mlm_backbone = self.backbone
self.mlm_head = MaskedLMHead(
config, word_embeddings=self.mlm_backbone.embeddings.word_embeddings
)
self.tsp_head = TextStructurePredictionHead(config)
self.apply(self._init_weights)
def forward(self, *args, **kwargs):
raise NotImplementedError(
"Refer to the implementation of text structrue prediction task for how to use the model."
)
class MaskedLMHead(nn.Module):
def __init__(self, config, word_embeddings=None):
super().__init__()
self.linear = nn.Linear(config.hidden_size, config.embedding_size)
self.norm = nn.LayerNorm(config.embedding_size)
self.predictor = nn.Linear(config.embedding_size, config.vocab_size)
if word_embeddings is not None:
self.predictor.weight = word_embeddings.weight
def forward(
self,
x, # (B,L,D)
is_selected=None, # <bool>(B,L), True at positions choosed by mlm probability
):
if is_selected is not None:
# Only mlm positions are counted in loss, so we can apply output layer computation only to
# those positions to significantly reduce compuatational cost
x = x[is_selected] # ( #selected, D)
x = self.linear(x) # (B,L,E)/(#selected,E)
x = F.gelu(x) # (B,L,E)/(#selected,E)
x = self.norm(x) # (B,L,E)/(#selected,E)
return self.predictor(x) # (B,L,V)/(#selected,V)
class ReplacedTokenDiscriminationHead(nn.Module):
def __init__(self, config):
super().__init__()
self.linear = nn.Linear(config.hidden_size, config.hidden_size)
self.predictor = nn.Linear(config.hidden_size, 1)
def forward(self, x): # (B,L,D)
x = self.linear(x) # (B,L,D)
x = F.gelu(x)
x = self.predictor(x) # (B,L,1)
return x.squeeze(-1) # (B,L)
class TextStructurePredictionHead(nn.Module):
def __init__(self, config):
super().__init__()
self.linear1 = nn.Linear(config.hidden_size * 2, config.hidden_size * 2)
self.norm = nn.LayerNorm(config.hidden_size * 2)
self.linear2 = nn.Linear(config.hidden_size * 2, 6)
def forward(
self, x, # (...,2D)
):
x = self.linear1(x) # (...,2D)
x = F.gelu(x) # (...,2D)
x = self.norm(x) # (...,2D)
return self.linear2(x) # (...,C)
# ====================================
# Finetuning Model
# ====================================
class TSPModelForTokenClassification(TSPPreTrainedModel):
def __init__(self, config, num_classes):
super().__init__(config)
self.backbone = TSPModel(config)
self.head = TokenClassificationHead(config, num_classes)
self.apply(self._init_weights)
def forward(
self,
input_ids, # <int>(B,L)
attention_mask, # <int>(B,L), 1 / 0 for tokens that are not attended/ attended
token_type_ids, # <int>(B,L), 0 / 1 corresponds to a segment A / B token
):
hidden_states = self.backbone(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
) # (B,L,D)
return self.head(hidden_states) # (B,L,C)
class TokenClassificationHead(nn.Module):
def __init__(self, config, num_classes):
super().__init__()
self.dropout = nn.Dropout(config.dropout_prob)
self.classifier = nn.Linear(config.hidden_size, num_classes)
def forward(self, x): # (B,L,D)
x = self.dropout(x) # (B,L,D)
x = self.classifier(x) # (B,L,C)
return x # (B,L,C)
class TSPModelForSequenceClassification(TSPPreTrainedModel):
def __init__(self, config, num_classes):
super().__init__(config)
self.backbone = TSPModel(config)
self.head = SequenceClassififcationHead(config, num_classes)
self.apply(self._init_weights)
def forward(
self,
input_ids, # <int>(B,L)
attention_mask, # <int>(B,L), 1 / 0 for tokens that are not attended/ attended
token_type_ids, # <int>(B,L), 0 / 1 corresponds to a segment A / B token
):
hidden_states = self.backbone(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
) # (B,L,D)
return self.head(hidden_states) # (B,L,C)
class SequenceClassififcationHead(nn.Module):
def __init__(self, config, num_classes):
super().__init__()
self.dropout = nn.Dropout(config.dropout_prob)
self.classifier = nn.Linear(config.hidden_size, num_classes)
def forward(
self, x, # (B,L,D)
):
x = x[:, 0, :] # (B,D), CLS token is taken
x = self.dropout(x) # (B,D)
return self.classifier(x) # (B,C)
class TSPModelForQuestionAnswering(TSPPreTrainedModel):
def __init__(self, config, num_classes):
super().__init__()
self.backbone = TSPModel(config)
self.head = SequenceClassififcationHead(config, num_classes)
self.apply(self._init_weights)
def forward(
self,
input_ids, # <int>(B,L)
attention_mask, # <int>(B,L), 1 / 0 for tokens that are not attended/ attended
token_type_ids, # <int>(B,L), 0 / 1 corresponds to a segment A / B token
):
hidden_states = self.backbone(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
) # (B,L,D)
return self.head(hidden_states) # (B,L), (B,L), (B)/None
class SquadHead(nn.Module):
def __init__(
self, config, beam_size, predict_answerability,
):
super().__init__()
self.beam_size = beam_size
self.predict_answerability = predict_answerability
# answer start position predictor
self.start_predictor = nn.Linear(config.hidden_size, 1)
# answer end position predictor
self.end_predictor = nn.Sequential(
nn.Linear(config.hidden_size * 2, 512), nn.GELU(), nn.Linear(512, 1),
)
# answerability_predictor
if predict_answerability:
self.answerability_predictor = nn.Sequential(
nn.Linear(config.hidden_size * 2, 512), nn.GELU(), nn.Linear(512, 1),
)
else:
self.answerability_predictor = None
def forward(
self,
hidden_states, # (B,L,D)
token_type_ids, # <int>(B,L), 0/1 for first sentence (question) or pad, 1 for second sentence (context)
answer_start_position=None, # train/eval: <int>(B)/None
):
# Possible range for answer. Note CLS token is also possible to say it is unanswerable
answer_mask = token_type_ids # (B,L)
last_sep = answer_mask.cumsum(dim=1) == answer_mask.sum(
dim=1, keepdim=True
) # (B,L), True if it is the last SEP or token after it
answer_mask = answer_mask * ~last_sep
answer_mask[:, 0] = 1
answer_mask = answer_mask.bool()
# preidct start positions
start_logits, start_top_hidden_states = self._calculate_start(
hidden_states, answer_mask, answer_start_position
) # (B,L) , None/ (B,1,D)/ (B,k,D)
# predict end positions
end_logits = self._calculate_end_logits(
hidden_states, start_top_hidden_states, answer_mask,
) # (B,L) / (B,k,L)
# (optional) preidct answerability
answerability_logits = None
if self.answerability_predictor is not None:
answerability_logits = self._calculate_answerability_logits(
hidden_states, start_logits
) # (B)
return start_logits, end_logits, answerability_logits
def _calculate_start(self, hidden_states, answer_mask, start_positions):
start_logits = self.start_predictor(hidden_states).squeeze(-1) # (B, L)
start_logits = start_logits.masked_fill(~answer_mask, -float("inf")) # (B,L)
start_top_indices, start_top_hidden_states = None, None
if self.training:
start_top_indices = start_positions # (B,)
else:
k = self.beam_size
_, start_top_indices = start_logits.topk(k=k, dim=-1) # (B,k)
start_top_hidden_states = torch.stack(
[
hiddens.index_select(dim=0, index=index)
for hiddens, index in zip(hidden_states, start_top_indices)
]
) # train: (B,1,D)/ eval: (B,k,D)
return start_logits, start_top_hidden_states
def _calculate_end_logits(
self, hidden_states, start_top_hidden_states, answer_mask
):
B, L, D = hidden_states.shape
start_tophiddens = start_top_hidden_states.view(B, -1, 1, D).expand(
-1, -1, L, -1
) # train: (B,1,L,D) / eval: (B,k,L,D)
end_hidden_states = torch.cat(
[
start_tophiddens,
hidden_states.view(B, 1, L, D).expand_as(start_tophiddens),
],
dim=-1,
) # train: (B,1,L,2D) / eval: (B,k,L,2D)
end_logits = self.end_predictor(end_hidden_states).squeeze(-1) # (B,1/k,L)
end_logits = end_logits.masked_fill(
~answer_mask.view(B, 1, L), -float("inf")
) # train: (B,1,L) / eval: (B,k,L)
end_logits = end_logits.squeeze(1) # train: (B,L) / eval: (B,k,L)
return end_logits
def _calculate_answerability_logits(self, hidden_states, start_logits):
answerability_hidden_states = hidden_states[:, 0, :] # (B,D)
start_probs = start_logits.softmax(dim=-1).unsqueeze(-1) # (B,L,1)
start_featrues = (start_probs * hidden_states).sum(dim=1) # (B,D)
answerability_hidden_states = torch.cat(
[answerability_hidden_states, start_featrues], dim=-1
) # (B,2D)
answerability_logits = self.answerability_predictor(
answerability_hidden_states
) # (B,1)
return answerability_logits.squeeze(-1) # (B,)
# ====================================
# Backbone (Transformer Encoder)
# ====================================
class TSPModel(TSPPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.embeddings = Embeddings(config)
if config.embedding_size != config.hidden_size:
self.embeddings_project = nn.Linear(
config.embedding_size, config.hidden_size
)
self.layers = nn.ModuleList(
EncoderLayer(config) for _ in range(config.num_hidden_layers)
)
self.apply(self._init_weights)
def forward(
self,
input_ids, # <int>(B,L)
attention_mask, # <int>(B,L), 1 / 0 for tokens that are not attended/ attended
token_type_ids, # <int>(B,L), 0 / 1 corresponds to a segment A / B token
):
x = self.embeddings(
input_ids=input_ids, token_type_ids=token_type_ids
) # (B,L,E)
if hasattr(self, "embeddings_project"):
x = self.embeddings_project(x) # (B,L,D)
extended_attention_mask = self.get_extended_attention_mask(
attention_mask=attention_mask,
input_shape=input_ids.shape,
device=input_ids.device,
) # (B,1,1,L)
for layer_idx, layer in enumerate(self.layers):
x = layer(x, attention_mask=extended_attention_mask) # (B,L,D)
return x # (B,L,D)
class Embeddings(nn.Module):
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(
config.vocab_size, config.embedding_size, padding_idx=config.pad_token_id
)
if config.position_embedding_type == "absolute":
self.position_embeddings = nn.Embedding(
config.max_sequence_length, config.embedding_size
)
self.token_type_embeddings = nn.Embedding(2, config.embedding_size)
self.norm = nn.LayerNorm(config.embedding_size)
self.dropout = nn.Dropout(config.dropout_prob)
def forward(
self,
input_ids, # <int>(B,L)
token_type_ids, # <int>(B,L), 0 / 1 corresponds to a segment A / B token
):
B, L = input_ids.shape
embeddings = self.word_embeddings(input_ids) # (B,L,E)
embeddings += self.token_type_embeddings(token_type_ids)
if hasattr(self, "position_embeddings"):
embeddings += self.position_embeddings.weight[None, :L, :]
embeddings = self.norm(embeddings) # (B,L,E)
embeddings = self.dropout(embeddings) # (B,L,E)
return embeddings # (B,L,E)
class EncoderLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.self_attn_block = BlockWrapper(config, MultiHeadSelfAttention)
self.transition_block = BlockWrapper(config, FeedForwardNetwork)
def forward(
self,
x, # (B,L,D)
attention_mask, # <int>(B,H,L,L), 0 / -1e4 for tokens that are not attended/ attended
):
x = self.self_attn_block(x, attention_mask=attention_mask)
x = self.transition_block(x)
return x # (B,L,D)
class BlockWrapper(nn.Module):
def __init__(self, config, sublayer_cls):
super().__init__()
self.sublayer = sublayer_cls(config)
self.dropout = nn.Dropout(config.dropout_prob)
self.norm = nn.LayerNorm(config.hidden_size)
def forward(self, x, **kwargs):
original_x = x
x = self.sublayer(x, **kwargs)
x = self.dropout(x)
x = original_x + x
x = self.norm(x)
return x
class MultiHeadSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.mix_proj = nn.Linear(config.hidden_size, 3 * config.hidden_size)
self.attention = Attention(config)
self.o_proj = nn.Linear(config.hidden_size, config.hidden_size)
self.H = config.num_attention_heads
self.d = config.hidden_size // self.H
if config.position_embedding_type == "rotary":
self.rotray_position_embeds = RotaryEmbedding(self.d)
def forward(
self,
x, # (B,L,D)
attention_mask, # <int>(B,H,L,L), 0 / -1e4 for tokens that are not attended/ attended
):
B, L, D, H, d = *x.shape, self.H, self.d
query, key, value = (
self.mix_proj(x).view(B, L, H, 3 * d).transpose(1, 2).split(d, dim=-1)
) # (B,H,L,d),(B,H,L,d),(B,H,L,d)
if hasattr(self, "rotray_position_embeds"):
query, key = self.rotray_position_embeds(query, key)
output = self.attention(query, key, value, attention_mask) # (B,H,L,d)
output = self.o_proj(output.transpose(1, 2).reshape(B, L, D)) # (B,L,D)
return output # (B,L,D)
class Attention(nn.Module):
def __init__(self, config):
super().__init__()
self.dropout = nn.Dropout(config.dropout_prob)
def forward(
self,
query, # (B,H,L,d)
key, # (B,H,L,d)
value, # (B,H,L,d)
attention_mask, # <int>(B,H,L,L), 0 / -1e4 for tokens that are not attended/ attended
):
B, H, L, d = key.shape
attention_score = query.matmul(key.transpose(-2, -1)) # (B,H,L,L)
attention_score = attention_score / math.sqrt(d) # (B,H,L,L)
attention_score += attention_mask # (B,H,L,L)
attention_probs = attention_score.softmax(dim=-1) # (B,H,L,L)
attention_probs = self.dropout(attention_probs) # (B,H,L,L)
output = attention_probs.matmul(value) # (B,H,L,d)
return output # (B,H,L,d)
class FeedForwardNetwork(nn.Module):
def __init__(self, config):
super().__init__()
self.linear1 = nn.Linear(config.hidden_size, config.intermediate_size)
self.linear2 = nn.Linear(config.intermediate_size, config.hidden_size)
def forward(self, x): # (B,L,D)
x = self.linear1(x) # (B L,intermediate_size)
x = F.gelu(x) # (B,L,intermediate_size)
x = self.linear2(x) # (B,L,D)
return x # (B,L,D)
class RotaryEmbedding(nn.Module):
seq_len_cached = 0
cos_cached = None
sin_cached = None
def __init__(self, dim):
super().__init__()
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer("inv_freq", inv_freq)
def _forward(self, x): # (B,H,L,d)
# Get rotary embeddings on the fly
## create
seq_len = x.shape[2]
if seq_len > RotaryEmbedding.seq_len_cached:
RotaryEmbedding.seq_len_cached = seq_len
t = torch.arange(seq_len, device=x.device, dtype=self.inv_freq.dtype)
freqs = t.view(-1, 1) @ self.inv_freq.view(1, -1)
emb = torch.cat((freqs, freqs), dim=-1).to(x.device) # (L,d)
RotaryEmbedding.cos_cached = emb.cos()[None, None, :, :]
RotaryEmbedding.sin_cached = emb.sin()[None, None, :, :]
## take
if seq_len == RotaryEmbedding.seq_len_cached:
cos, sin = RotaryEmbedding.cos_cached, RotaryEmbedding.sin_cached
else:
cos, sin = (
RotaryEmbedding.cos_cached[:, :, :seq_len, :], # (1,1,L,d)
RotaryEmbedding.sin_cached[:, :, :seq_len, :], # (1,1,L,d)
)
# Apply rotary embeddings
sections = [x.shape[-1] // 2, x.shape[-1] - x.shape[-1] // 2]
x1, x2 = x.split(sections, dim=-1)
half_rotated_x = torch.cat((-x2, x1), dim=-1)
return (x * cos) + (half_rotated_x * sin)
def forward(
self, query, key, # (B,H,L,d) # (B,H,L,d)
):
return self._forward(query), self._forward(key)
|