import math import numpy as np import torch import torch.nn as nn from PIL import Image, ImageDraw def autopad(k, p=None): # kernel, padding # Pad to 'same' if p is None: p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad return p class DepthSeperabelConv2d(nn.Module): """ DepthSeperable Convolution 2d with residual connection """ def __init__(self, inplanes, planes, kernel_size=3, stride=1, downsample=None, act=True): super(DepthSeperabelConv2d, self).__init__() self.depthwise = nn.Sequential( nn.Conv2d(inplanes, inplanes, kernel_size, stride=stride, groups=inplanes, padding=kernel_size//2, bias=False), nn.BatchNorm2d(inplanes, momentum=BN_MOMENTUM) ) # self.depthwise = nn.Conv2d(inplanes, inplanes, kernel_size, stride=stride, groups=inplanes, padding=1, bias=False) # self.pointwise = nn.Conv2d(inplanes, planes, 1, bias=False) self.pointwise = nn.Sequential( nn.Conv2d(inplanes, planes, 1, bias=False), nn.BatchNorm2d(planes, momentum=BN_MOMENTUM) ) self.downsample = downsample self.stride = stride try: self.act = nn.Hardswish() if act else nn.Identity() except: self.act = nn.Identity() def forward(self, x): #residual = x out = self.depthwise(x) out = self.act(out) out = self.pointwise(out) if self.downsample is not None: residual = self.downsample(x) out = self.act(out) return out class SharpenConv(nn.Module): # SharpenConv convolution def __init__(self, c1, c2, k=3, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups super(SharpenConv, self).__init__() sobel_kernel = np.array([[-1, -1, -1], [-1, 8, -1], [-1, -1, -1]], dtype='float32') kenel_weight = np.vstack([sobel_kernel]*c2*c1).reshape(c2,c1,3,3) self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False) self.conv.weight.data = torch.from_numpy(kenel_weight) self.conv.weight.requires_grad = False self.bn = nn.BatchNorm2d(c2) try: self.act = nn.Hardswish() if act else nn.Identity() except: self.act = nn.Identity() def forward(self, x): return self.act(self.bn(self.conv(x))) def fuseforward(self, x): return self.act(self.conv(x)) class Conv(nn.Module): # Standard convolution def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups super(Conv, self).__init__() self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False) self.bn = nn.BatchNorm2d(c2) try: self.act = nn.Hardswish() if act else nn.Identity() except: self.act = nn.Identity() def forward(self, x): return self.act(self.bn(self.conv(x))) def fuseforward(self, x): return self.act(self.conv(x)) class Bottleneck(nn.Module): # Standard bottleneck def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion super(Bottleneck, self).__init__() c_ = int(c2 * e) # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = Conv(c_, c2, 3, 1, g=g) self.add = shortcut and c1 == c2 def forward(self, x): return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x)) class BottleneckCSP(nn.Module): # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion super(BottleneckCSP, self).__init__() c_ = int(c2 * e) # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False) self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False) self.cv4 = Conv(2 * c_, c2, 1, 1) self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3) self.act = nn.LeakyReLU(0.1, inplace=True) self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)]) def forward(self, x): y1 = self.cv3(self.m(self.cv1(x))) y2 = self.cv2(x) return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1)))) class SPP(nn.Module): # Spatial pyramid pooling layer used in YOLOv3-SPP def __init__(self, c1, c2, k=(5, 9, 13)): super(SPP, self).__init__() c_ = c1 // 2 # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1) self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k]) def forward(self, x): x = self.cv1(x) return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1)) class Focus(nn.Module): # Focus wh information into c-space # slice concat conv def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups super(Focus, self).__init__() self.conv = Conv(c1 * 4, c2, k, s, p, g, act) def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2) return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1)) class Concat(nn.Module): # Concatenate a list of tensors along dimension def __init__(self, dimension=1): super(Concat, self).__init__() self.d = dimension def forward(self, x): """ print("***********************") for f in x: print(f.shape) """ return torch.cat(x, self.d) class Detect(nn.Module): stride = None # strides computed during build def __init__(self, nc=13, anchors=(), ch=()): # detection layer super(Detect, self).__init__() self.nc = nc # number of classes self.no = nc + 5 # number of outputs per anchor 85 self.nl = len(anchors) # number of detection layers 3 self.na = len(anchors[0]) // 2 # number of anchors 3 self.grid = [torch.zeros(1)] * self.nl # init grid a = torch.tensor(anchors).float().view(self.nl, -1, 2) self.register_buffer('anchors', a) # shape(nl,na,2) self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2) self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv def forward(self, x): z = [] # inference output for i in range(self.nl): x[i] = self.m[i](x[i]) # conv # print(str(i)+str(x[i].shape)) bs, _, ny, nx = x[i].shape # x(bs,255,w,w) to x(bs,3,w,w,85) x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() # print(str(i)+str(x[i].shape)) if not self.training: # inference if self.grid[i].shape[2:4] != x[i].shape[2:4]: self.grid[i] = self._make_grid(nx, ny).to(x[i].device) y = x[i].sigmoid() #print("**") #print(y.shape) #[1, 3, w, h, 85] #print(self.grid[i].shape) #[1, 3, w, h, 2] y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i].to(x[i].device)) * self.stride[i] # xy y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh """print("**") print(y.shape) #[1, 3, w, h, 85] print(y.view(bs, -1, self.no).shape) #[1, 3*w*h, 85]""" z.append(y.view(bs, -1, self.no)) return x if self.training else (torch.cat(z, 1), x) @staticmethod def _make_grid(nx=20, ny=20): yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)]) return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float() """class Detections: # detections class for YOLOv5 inference results def __init__(self, imgs, pred, names=None): super(Detections, self).__init__() d = pred[0].device # device gn = [torch.tensor([*[im.shape[i] for i in [1, 0, 1, 0]], 1., 1.], device=d) for im in imgs] # normalizations self.imgs = imgs # list of images as numpy arrays self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls) self.names = names # class names self.xyxy = pred # xyxy pixels self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized self.n = len(self.pred) def display(self, pprint=False, show=False, save=False): colors = color_list() for i, (img, pred) in enumerate(zip(self.imgs, self.pred)): str = f'Image {i + 1}/{len(self.pred)}: {img.shape[0]}x{img.shape[1]} ' if pred is not None: for c in pred[:, -1].unique(): n = (pred[:, -1] == c).sum() # detections per class str += f'{n} {self.names[int(c)]}s, ' # add to string if show or save: img = Image.fromarray(img.astype(np.uint8)) if isinstance(img, np.ndarray) else img # from np for *box, conf, cls in pred: # xyxy, confidence, class # str += '%s %.2f, ' % (names[int(cls)], conf) # label ImageDraw.Draw(img).rectangle(box, width=4, outline=colors[int(cls) % 10]) # plot if save: f = f'results{i}.jpg' str += f"saved to '{f}'" img.save(f) # save if show: img.show(f'Image {i}') # show if pprint: print(str) def print(self): self.display(pprint=True) # print results def show(self): self.display(show=True) # show results def save(self): self.display(save=True) # save results def __len__(self): return self.n def tolist(self): # return a list of Detections objects, i.e. 'for result in results.tolist():' x = [Detections([self.imgs[i]], [self.pred[i]], self.names) for i in range(self.n)] for d in x: for k in ['imgs', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']: setattr(d, k, getattr(d, k)[0]) # pop out of list"""