RobCzikkel commited on
Commit
5ae6680
1 Parent(s): 1114470

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +46 -0
README.md CHANGED
@@ -31,6 +31,52 @@ The prompt used is as follows:
31
  """
32
  ```
33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
  ## Intended uses & limitations
35
 
36
  This is a private project for fine-tuning a medical language model, it is not intended to be used as a source medical advice.
 
31
  """
32
  ```
33
 
34
+ ## Inference
35
+
36
+ The fine-tuned model has a saved generation config, to use it:
37
+ ```py
38
+ model_config = GenerationConfig.from_pretrained(
39
+ DoctorGPT
40
+ )
41
+ ```
42
+
43
+ This config is a diverse beam search strategy:
44
+ ```py
45
+ diversebeamConfig = GenerationConfig(
46
+ min_length=20,
47
+ max_length=256,
48
+ do_sample=False,
49
+ num_beams=4,
50
+ num_beam_groups=4,
51
+ diversity_penalty=1.0,
52
+ repetition_penalty=3.0,
53
+ eos_token_id=model.config.eos_token_id,
54
+ pad_token_id=model.config.pad_token_id,
55
+ bos_token_id=model.config.bos_token_id,
56
+ )
57
+ ```
58
+
59
+ For best results, please use this as your generator function:
60
+ ```py
61
+ def generate(query):
62
+ sys = "You are a Doctor. Below is a question from a patient. Write a response to the patient that answers their question\n\n"
63
+ patient = f"### Patient:\n{query}\n\n"
64
+ doctor = f"### Doctor:\n "
65
+
66
+ prompt = sys+patient+doctor
67
+
68
+ inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
69
+ generated_ids = model.generate(
70
+ **inputs,
71
+ generation_config=generation_config,
72
+ )
73
+ outputs = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
74
+ answer = '.'.join(answer.split('.')[:-1])
75
+ torch.cuda.empty_cache()
76
+ return answer + "."
77
+ ```
78
+
79
+
80
  ## Intended uses & limitations
81
 
82
  This is a private project for fine-tuning a medical language model, it is not intended to be used as a source medical advice.