Rodrigo1771
commited on
Commit
•
e7b0990
1
Parent(s):
7556a63
End of training
Browse files- README.md +13 -12
- all_results.json +24 -24
- eval_results.json +10 -10
- predict_results.json +8 -8
- predictions.txt +0 -0
- tb/events.out.tfevents.1725888457.0a1c9bec2a53.24273.1 +3 -0
- train.log +48 -0
- train_results.json +7 -7
- trainer_state.json +187 -138
README.md
CHANGED
@@ -3,9 +3,10 @@ library_name: transformers
|
|
3 |
license: apache-2.0
|
4 |
base_model: michiyasunaga/BioLinkBERT-base
|
5 |
tags:
|
|
|
6 |
- generated_from_trainer
|
7 |
datasets:
|
8 |
-
- drugtemist-en-fasttext-75-ner
|
9 |
metrics:
|
10 |
- precision
|
11 |
- recall
|
@@ -18,24 +19,24 @@ model-index:
|
|
18 |
name: Token Classification
|
19 |
type: token-classification
|
20 |
dataset:
|
21 |
-
name: drugtemist-en-fasttext-75-ner
|
22 |
-
type: drugtemist-en-fasttext-75-ner
|
23 |
config: DrugTEMIST English NER
|
24 |
split: validation
|
25 |
args: DrugTEMIST English NER
|
26 |
metrics:
|
27 |
- name: Precision
|
28 |
type: precision
|
29 |
-
value: 0.
|
30 |
- name: Recall
|
31 |
type: recall
|
32 |
-
value: 0.
|
33 |
- name: F1
|
34 |
type: f1
|
35 |
-
value: 0.
|
36 |
- name: Accuracy
|
37 |
type: accuracy
|
38 |
-
value: 0.
|
39 |
---
|
40 |
|
41 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -43,12 +44,12 @@ should probably proofread and complete it, then remove this comment. -->
|
|
43 |
|
44 |
# output
|
45 |
|
46 |
-
This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-base](https://huggingface.co/michiyasunaga/BioLinkBERT-base) on the drugtemist-en-fasttext-75-ner dataset.
|
47 |
It achieves the following results on the evaluation set:
|
48 |
-
- Loss: 0.
|
49 |
-
- Precision: 0.
|
50 |
-
- Recall: 0.
|
51 |
-
- F1: 0.
|
52 |
- Accuracy: 0.9988
|
53 |
|
54 |
## Model description
|
|
|
3 |
license: apache-2.0
|
4 |
base_model: michiyasunaga/BioLinkBERT-base
|
5 |
tags:
|
6 |
+
- token-classification
|
7 |
- generated_from_trainer
|
8 |
datasets:
|
9 |
+
- Rodrigo1771/drugtemist-en-fasttext-75-ner
|
10 |
metrics:
|
11 |
- precision
|
12 |
- recall
|
|
|
19 |
name: Token Classification
|
20 |
type: token-classification
|
21 |
dataset:
|
22 |
+
name: Rodrigo1771/drugtemist-en-fasttext-75-ner
|
23 |
+
type: Rodrigo1771/drugtemist-en-fasttext-75-ner
|
24 |
config: DrugTEMIST English NER
|
25 |
split: validation
|
26 |
args: DrugTEMIST English NER
|
27 |
metrics:
|
28 |
- name: Precision
|
29 |
type: precision
|
30 |
+
value: 0.9249771271729186
|
31 |
- name: Recall
|
32 |
type: recall
|
33 |
+
value: 0.9422180801491147
|
34 |
- name: F1
|
35 |
type: f1
|
36 |
+
value: 0.9335180055401663
|
37 |
- name: Accuracy
|
38 |
type: accuracy
|
39 |
+
value: 0.998772081600759
|
40 |
---
|
41 |
|
42 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
44 |
|
45 |
# output
|
46 |
|
47 |
+
This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-base](https://huggingface.co/michiyasunaga/BioLinkBERT-base) on the Rodrigo1771/drugtemist-en-fasttext-75-ner dataset.
|
48 |
It achieves the following results on the evaluation set:
|
49 |
+
- Loss: 0.0076
|
50 |
+
- Precision: 0.9250
|
51 |
+
- Recall: 0.9422
|
52 |
+
- F1: 0.9335
|
53 |
- Accuracy: 0.9988
|
54 |
|
55 |
## Model description
|
all_results.json
CHANGED
@@ -1,26 +1,26 @@
|
|
1 |
{
|
2 |
-
"epoch":
|
3 |
-
"eval_accuracy": 0.
|
4 |
-
"eval_f1": 0.
|
5 |
-
"eval_loss": 0.
|
6 |
-
"eval_precision": 0.
|
7 |
-
"eval_recall": 0.
|
8 |
-
"eval_runtime":
|
9 |
-
"eval_samples":
|
10 |
-
"eval_samples_per_second":
|
11 |
-
"eval_steps_per_second":
|
12 |
-
"predict_accuracy": 0.
|
13 |
-
"predict_f1": 0.
|
14 |
-
"predict_loss": 0.
|
15 |
-
"predict_precision": 0.
|
16 |
-
"predict_recall": 0.
|
17 |
-
"predict_runtime":
|
18 |
-
"predict_samples_per_second":
|
19 |
-
"predict_steps_per_second":
|
20 |
-
"total_flos":
|
21 |
-
"train_loss": 0.
|
22 |
-
"train_runtime":
|
23 |
-
"train_samples":
|
24 |
-
"train_samples_per_second":
|
25 |
-
"train_steps_per_second":
|
26 |
}
|
|
|
1 |
{
|
2 |
+
"epoch": 10.0,
|
3 |
+
"eval_accuracy": 0.998772081600759,
|
4 |
+
"eval_f1": 0.9335180055401663,
|
5 |
+
"eval_loss": 0.007628325838595629,
|
6 |
+
"eval_precision": 0.9249771271729186,
|
7 |
+
"eval_recall": 0.9422180801491147,
|
8 |
+
"eval_runtime": 15.1819,
|
9 |
+
"eval_samples": 6946,
|
10 |
+
"eval_samples_per_second": 457.519,
|
11 |
+
"eval_steps_per_second": 57.239,
|
12 |
+
"predict_accuracy": 0.9986685364931299,
|
13 |
+
"predict_f1": 0.9202592279515356,
|
14 |
+
"predict_loss": 0.007816320285201073,
|
15 |
+
"predict_precision": 0.8938149972632731,
|
16 |
+
"predict_recall": 0.9483159117305459,
|
17 |
+
"predict_runtime": 28.7456,
|
18 |
+
"predict_samples_per_second": 511.904,
|
19 |
+
"predict_steps_per_second": 64.01,
|
20 |
+
"total_flos": 1.394810359803495e+16,
|
21 |
+
"train_loss": 0.0028968164414402532,
|
22 |
+
"train_runtime": 2196.5741,
|
23 |
+
"train_samples": 32447,
|
24 |
+
"train_samples_per_second": 147.716,
|
25 |
+
"train_steps_per_second": 2.308
|
26 |
}
|
eval_results.json
CHANGED
@@ -1,12 +1,12 @@
|
|
1 |
{
|
2 |
-
"epoch":
|
3 |
-
"eval_accuracy": 0.
|
4 |
-
"eval_f1": 0.
|
5 |
-
"eval_loss": 0.
|
6 |
-
"eval_precision": 0.
|
7 |
-
"eval_recall": 0.
|
8 |
-
"eval_runtime":
|
9 |
-
"eval_samples":
|
10 |
-
"eval_samples_per_second":
|
11 |
-
"eval_steps_per_second":
|
12 |
}
|
|
|
1 |
{
|
2 |
+
"epoch": 10.0,
|
3 |
+
"eval_accuracy": 0.998772081600759,
|
4 |
+
"eval_f1": 0.9335180055401663,
|
5 |
+
"eval_loss": 0.007628325838595629,
|
6 |
+
"eval_precision": 0.9249771271729186,
|
7 |
+
"eval_recall": 0.9422180801491147,
|
8 |
+
"eval_runtime": 15.1819,
|
9 |
+
"eval_samples": 6946,
|
10 |
+
"eval_samples_per_second": 457.519,
|
11 |
+
"eval_steps_per_second": 57.239
|
12 |
}
|
predict_results.json
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
{
|
2 |
-
"predict_accuracy": 0.
|
3 |
-
"predict_f1": 0.
|
4 |
-
"predict_loss": 0.
|
5 |
-
"predict_precision": 0.
|
6 |
-
"predict_recall": 0.
|
7 |
-
"predict_runtime":
|
8 |
-
"predict_samples_per_second":
|
9 |
-
"predict_steps_per_second":
|
10 |
}
|
|
|
1 |
{
|
2 |
+
"predict_accuracy": 0.9986685364931299,
|
3 |
+
"predict_f1": 0.9202592279515356,
|
4 |
+
"predict_loss": 0.007816320285201073,
|
5 |
+
"predict_precision": 0.8938149972632731,
|
6 |
+
"predict_recall": 0.9483159117305459,
|
7 |
+
"predict_runtime": 28.7456,
|
8 |
+
"predict_samples_per_second": 511.904,
|
9 |
+
"predict_steps_per_second": 64.01
|
10 |
}
|
predictions.txt
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
tb/events.out.tfevents.1725888457.0a1c9bec2a53.24273.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3bb5583c37fdbd9ea659142a09fba0fae95a78d6f0eaac64a0292bc00e64215d
|
3 |
+
size 560
|
train.log
CHANGED
@@ -1429,3 +1429,51 @@ Training completed. Do not forget to share your model on huggingface.co/models =
|
|
1429 |
{'eval_loss': 0.00769586768001318, 'eval_precision': 0.9194876486733761, 'eval_recall': 0.9366262814538676, 'eval_f1': 0.92797783933518, 'eval_accuracy': 0.9987511511734993, 'eval_runtime': 15.2047, 'eval_samples_per_second': 456.832, 'eval_steps_per_second': 57.153, 'epoch': 10.0}
|
1430 |
{'train_runtime': 2196.5741, 'train_samples_per_second': 147.716, 'train_steps_per_second': 2.308, 'train_loss': 0.0028968164414402532, 'epoch': 10.0}
|
1431 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1432 |
0%| | 0/869 [00:00<?, ?it/s]
|
1433 |
1%| | 10/869 [00:00<00:09, 93.14it/s]
|
1434 |
2%|▏ | 20/869 [00:00<00:10, 79.68it/s]
|
1435 |
3%|▎ | 29/869 [00:00<00:10, 78.36it/s]
|
1436 |
4%|▍ | 37/869 [00:00<00:11, 75.35it/s]
|
1437 |
5%|▌ | 46/869 [00:00<00:10, 78.54it/s]
|
1438 |
6%|▋ | 55/869 [00:00<00:10, 81.34it/s]
|
1439 |
7%|▋ | 64/869 [00:00<00:10, 77.39it/s]
|
1440 |
8%|▊ | 72/869 [00:00<00:10, 77.10it/s]
|
1441 |
9%|▉ | 81/869 [00:01<00:09, 80.79it/s]
|
1442 |
10%|█ | 90/869 [00:01<00:09, 83.27it/s]
|
1443 |
12%|█▏ | 100/869 [00:01<00:08, 85.89it/s]
|
1444 |
13%|█▎ | 109/869 [00:01<00:09, 82.19it/s]
|
1445 |
14%|█▎ | 118/869 [00:01<00:09, 80.71it/s]
|
1446 |
15%|█▍ | 127/869 [00:01<00:09, 79.46it/s]
|
1447 |
16%|█▌ | 136/869 [00:01<00:09, 80.95it/s]
|
1448 |
17%|█▋ | 145/869 [00:01<00:09, 76.58it/s]
|
1449 |
18%|█▊ | 154/869 [00:01<00:09, 78.77it/s]
|
1450 |
19%|█▉ | 163/869 [00:02<00:08, 78.83it/s]
|
1451 |
20%|█▉ | 171/869 [00:02<00:09, 76.42it/s]
|
1452 |
21%|██ | 179/869 [00:02<00:09, 75.56it/s]
|
1453 |
22%|██▏ | 188/869 [00:02<00:08, 77.42it/s]
|
1454 |
23%|██▎ | 196/869 [00:02<00:09, 74.78it/s]
|
1455 |
24%|██▎ | 205/869 [00:02<00:08, 77.47it/s]
|
1456 |
25%|██▍ | 214/869 [00:02<00:08, 79.04it/s]
|
1457 |
26%|██▌ | 223/869 [00:02<00:08, 80.38it/s]
|
1458 |
27%|██▋ | 232/869 [00:02<00:08, 76.59it/s]
|
1459 |
28%|██▊ | 240/869 [00:03<00:08, 77.10it/s]
|
1460 |
29%|██▊ | 248/869 [00:03<00:08, 71.77it/s]
|
1461 |
30%|██▉ | 257/869 [00:03<00:08, 74.54it/s]
|
1462 |
30%|███ | 265/869 [00:03<00:08, 73.96it/s]
|
1463 |
31%|███▏ | 273/869 [00:03<00:07, 74.71it/s]
|
1464 |
32%|███▏ | 281/869 [00:03<00:07, 74.68it/s]
|
1465 |
33%|███▎ | 289/869 [00:03<00:07, 73.95it/s]
|
1466 |
34%|███▍ | 297/869 [00:03<00:07, 74.29it/s]
|
1467 |
35%|███▌ | 305/869 [00:03<00:08, 70.32it/s]
|
1468 |
36%|███▌ | 313/869 [00:04<00:07, 71.72it/s]
|
1469 |
37%|███▋ | 321/869 [00:04<00:07, 71.00it/s]
|
1470 |
38%|███▊ | 330/869 [00:04<00:07, 74.74it/s]
|
1471 |
39%|███▉ | 339/869 [00:04<00:06, 76.71it/s]
|
1472 |
40%|███▉ | 347/869 [00:04<00:07, 72.09it/s]
|
1473 |
41%|████ | 355/869 [00:04<00:07, 72.99it/s]
|
1474 |
42%|████▏ | 364/869 [00:04<00:06, 76.76it/s]
|
1475 |
43%|████▎ | 373/869 [00:04<00:06, 74.39it/s]
|
1476 |
44%|████▍ | 381/869 [00:04<00:06, 75.28it/s]
|
1477 |
45%|████▍ | 389/869 [00:05<00:06, 70.47it/s]
|
1478 |
46%|████▌ | 398/869 [00:05<00:06, 73.16it/s]
|
1479 |
47%|████▋ | 407/869 [00:05<00:06, 75.53it/s]
|
1480 |
48%|████▊ | 416/869 [00:05<00:05, 78.44it/s]
|
1481 |
49%|████▉ | 424/869 [00:05<00:05, 78.67it/s]
|
1482 |
50%|████▉ | 433/869 [00:05<00:05, 79.51it/s]
|
1483 |
51%|█████ | 441/869 [00:05<00:05, 77.23it/s]
|
1484 |
52%|█████▏ | 449/869 [00:05<00:05, 75.66it/s]
|
1485 |
53%|█████▎ | 457/869 [00:05<00:05, 76.56it/s]
|
1486 |
54%|█████▎ | 465/869 [00:06<00:05, 74.67it/s]
|
1487 |
55%|█████▍ | 475/869 [00:06<00:04, 79.79it/s]
|
1488 |
56%|█████▌ | 484/869 [00:06<00:04, 82.19it/s]
|
1489 |
57%|█████▋ | 493/869 [00:06<00:04, 76.64it/s]
|
1490 |
58%|█████▊ | 501/869 [00:06<00:04, 76.35it/s]
|
1491 |
59%|█████▊ | 509/869 [00:06<00:04, 73.64it/s]
|
1492 |
60%|█████▉ | 518/869 [00:06<00:04, 76.46it/s]
|
1493 |
61%|██████ | 526/869 [00:06<00:04, 71.73it/s]
|
1494 |
61%|██████▏ | 534/869 [00:06<00:04, 73.69it/s]
|
1495 |
62%|██████▏ | 542/869 [00:07<00:04, 70.92it/s]
|
1496 |
63%|██████▎ | 551/869 [00:07<00:04, 74.82it/s]
|
1497 |
64%|██████▍ | 559/869 [00:07<00:04, 74.53it/s]
|
1498 |
65%|██████▌ | 567/869 [00:07<00:04, 73.79it/s]
|
1499 |
66%|██████▌ | 575/869 [00:07<00:03, 74.82it/s]
|
1500 |
67%|██████▋ | 583/869 [00:07<00:03, 73.69it/s]
|
1501 |
68%|██████▊ | 591/869 [00:07<00:03, 74.15it/s]
|
1502 |
69%|██████▉ | 600/869 [00:07<00:03, 77.09it/s]
|
1503 |
70%|███████ | 609/869 [00:07<00:03, 78.40it/s]
|
1504 |
71%|███████ | 617/869 [00:08<00:03, 77.00it/s]
|
1505 |
72%|███████▏ | 625/869 [00:08<00:03, 75.42it/s]
|
1506 |
73%|███████▎ | 633/869 [00:08<00:03, 75.64it/s]
|
1507 |
74%|███████▍ | 641/869 [00:08<00:03, 75.26it/s]
|
1508 |
75%|███████▍ | 650/869 [00:08<00:02, 78.48it/s]
|
1509 |
76%|███████▌ | 658/869 [00:08<00:02, 77.25it/s]
|
1510 |
77%|███████▋ | 667/869 [00:08<00:02, 78.48it/s]
|
1511 |
78%|███████▊ | 677/869 [00:08<00:02, 82.17it/s]
|
1512 |
79%|███████▉ | 686/869 [00:09<00:02, 70.63it/s]
|
1513 |
80%|███████▉ | 694/869 [00:09<00:02, 72.95it/s]
|
1514 |
81%|████████ | 702/869 [00:09<00:02, 72.96it/s]
|
1515 |
82%|████████▏ | 711/869 [00:09<00:02, 75.37it/s]
|
1516 |
83%|████████▎ | 719/869 [00:09<00:01, 75.52it/s]
|
1517 |
84%|████████▍ | 728/869 [00:09<00:01, 77.16it/s]
|
1518 |
85%|████████▍ | 736/869 [00:09<00:01, 77.53it/s]
|
1519 |
86%|████████▌ | 744/869 [00:09<00:01, 77.74it/s]
|
1520 |
87%|████████▋ | 752/869 [00:09<00:01, 74.45it/s]
|
1521 |
88%|████████▊ | 761/869 [00:09<00:01, 77.76it/s]
|
1522 |
88%|████████▊ | 769/869 [00:10<00:01, 73.83it/s]
|
1523 |
89%|████████▉ | 777/869 [00:10<00:01, 65.48it/s]
|
1524 |
90%|█████████ | 785/869 [00:10<00:01, 67.59it/s]
|
1525 |
91%|█████████▏| 794/869 [00:10<00:01, 71.22it/s]
|
1526 |
92%|█████████▏| 802/869 [00:10<00:00, 73.53it/s]
|
1527 |
93%|█████████▎| 810/869 [00:10<00:00, 74.76it/s]
|
1528 |
94%|█████████▍| 818/869 [00:10<00:00, 75.19it/s]
|
1529 |
95%|█████████▌| 826/869 [00:10<00:00, 75.37it/s]
|
1530 |
96%|█████████▌| 834/869 [00:10<00:00, 74.91it/s]
|
1531 |
97%|█████████▋| 843/869 [00:11<00:00, 77.97it/s]
|
1532 |
98%|█████████▊| 852/869 [00:11<00:00, 79.15it/s]
|
1533 |
99%|█████████▉| 860/869 [00:11<00:00, 74.82it/s]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1534 |
0%| | 0/1840 [00:00<?, ?it/s]
|
1535 |
1%| | 11/1840 [00:00<00:18, 98.85it/s]
|
1536 |
1%| | 21/1840 [00:00<00:22, 79.68it/s]
|
1537 |
2%|▏ | 30/1840 [00:00<00:22, 79.32it/s]
|
1538 |
2%|▏ | 39/1840 [00:00<00:22, 79.99it/s]
|
1539 |
3%|▎ | 48/1840 [00:00<00:22, 81.01it/s]
|
1540 |
3%|▎ | 57/1840 [00:00<00:22, 80.70it/s]
|
1541 |
4%|▎ | 66/1840 [00:00<00:22, 78.15it/s]
|
1542 |
4%|▍ | 74/1840 [00:00<00:22, 78.25it/s]
|
1543 |
5%|▍ | 83/1840 [00:01<00:21, 80.09it/s]
|
1544 |
5%|▌ | 92/1840 [00:01<00:21, 79.74it/s]
|
1545 |
6%|▌ | 102/1840 [00:01<00:20, 83.78it/s]
|
1546 |
6%|▌ | 111/1840 [00:01<00:20, 84.96it/s]
|
1547 |
7%|▋ | 120/1840 [00:01<00:20, 83.45it/s]
|
1548 |
7%|▋ | 129/1840 [00:01<00:21, 79.72it/s]
|
1549 |
8%|▊ | 138/1840 [00:01<00:20, 81.35it/s]
|
1550 |
8%|▊ | 147/1840 [00:01<00:20, 82.23it/s]
|
1551 |
8%|▊ | 156/1840 [00:01<00:21, 78.29it/s]
|
1552 |
9%|▉ | 164/1840 [00:02<00:21, 76.51it/s]
|
1553 |
9%|▉ | 173/1840 [00:02<00:21, 78.43it/s]
|
1554 |
10%|▉ | 183/1840 [00:02<00:19, 82.86it/s]
|
1555 |
10%|█ | 192/1840 [00:02<00:19, 84.17it/s]
|
1556 |
11%|█ | 201/1840 [00:02<00:19, 82.31it/s]
|
1557 |
11%|█▏ | 210/1840 [00:02<00:20, 79.83it/s]
|
1558 |
12%|█▏ | 219/1840 [00:02<00:20, 80.69it/s]
|
1559 |
12%|█▏ | 228/1840 [00:02<00:19, 82.07it/s]
|
1560 |
13%|█▎ | 237/1840 [00:02<00:21, 76.28it/s]
|
1561 |
13%|█▎ | 246/1840 [00:03<00:20, 78.24it/s]
|
1562 |
14%|█▍ | 254/1840 [00:03<00:20, 78.47it/s]
|
1563 |
14%|█▍ | 262/1840 [00:03<00:20, 78.54it/s]
|
1564 |
15%|█▍ | 270/1840 [00:03<00:20, 78.47it/s]
|
1565 |
15%|█▌ | 280/1840 [00:03<00:18, 83.71it/s]
|
1566 |
16%|█▌ | 290/1840 [00:03<00:18, 83.65it/s]
|
1567 |
16%|█▋ | 299/1840 [00:03<00:18, 85.16it/s]
|
1568 |
17%|█▋ | 308/1840 [00:03<00:18, 83.08it/s]
|
1569 |
17%|█▋ | 317/1840 [00:03<00:17, 84.68it/s]
|
1570 |
18%|█▊ | 326/1840 [00:04<00:18, 83.75it/s]
|
1571 |
18%|█▊ | 335/1840 [00:04<00:18, 82.34it/s]
|
1572 |
19%|█▉ | 345/1840 [00:04<00:17, 84.84it/s]
|
1573 |
19%|█▉ | 354/1840 [00:04<00:18, 80.58it/s]
|
1574 |
20%|█▉ | 363/1840 [00:04<00:18, 80.45it/s]
|
1575 |
20%|██ | 373/1840 [00:04<00:17, 82.94it/s]
|
1576 |
21%|██ | 382/1840 [00:04<00:17, 84.75it/s]
|
1577 |
21%|██▏ | 391/1840 [00:04<00:17, 83.12it/s]
|
1578 |
22%|██▏ | 400/1840 [00:04<00:17, 81.50it/s]
|
1579 |
22%|██▏ | 409/1840 [00:05<00:17, 82.12it/s]
|
1580 |
23%|██▎ | 418/1840 [00:05<00:17, 79.95it/s]
|
1581 |
23%|██▎ | 427/1840 [00:05<00:17, 80.56it/s]
|
1582 |
24%|██▎ | 436/1840 [00:05<00:17, 79.79it/s]
|
1583 |
24%|██▍ | 445/1840 [00:05<00:17, 80.57it/s]
|
1584 |
25%|██▍ | 454/1840 [00:05<00:17, 80.30it/s]
|
1585 |
25%|██▌ | 463/1840 [00:05<00:16, 82.64it/s]
|
1586 |
26%|██▌ | 472/1840 [00:05<00:16, 84.64it/s]
|
1587 |
26%|██▌ | 481/1840 [00:05<00:17, 76.17it/s]
|
1588 |
27%|██▋ | 490/1840 [00:06<00:17, 79.25it/s]
|
1589 |
27%|██▋ | 499/1840 [00:06<00:17, 76.61it/s]
|
1590 |
28%|██▊ | 508/1840 [00:06<00:17, 77.81it/s]
|
1591 |
28%|██▊ | 518/1840 [00:06<00:16, 81.49it/s]
|
1592 |
29%|██▊ | 527/1840 [00:06<00:15, 82.26it/s]
|
1593 |
29%|██▉ | 536/1840 [00:06<00:16, 81.29it/s]
|
1594 |
30%|██▉ | 545/1840 [00:06<00:15, 81.42it/s]
|
1595 |
30%|███ | 554/1840 [00:06<00:15, 82.78it/s]
|
1596 |
31%|███ | 563/1840 [00:06<00:15, 80.10it/s]
|
1597 |
31%|███ | 573/1840 [00:07<00:15, 83.39it/s]
|
1598 |
32%|███▏ | 583/1840 [00:07<00:14, 85.46it/s]
|
1599 |
32%|███▏ | 592/1840 [00:07<00:15, 82.90it/s]
|
1600 |
33%|███▎ | 601/1840 [00:07<00:15, 81.01it/s]
|
1601 |
33%|███▎ | 611/1840 [00:07<00:14, 82.55it/s]
|
1602 |
34%|███▎ | 620/1840 [00:07<00:15, 79.88it/s]
|
1603 |
34%|███▍ | 629/1840 [00:07<00:15, 79.21it/s]
|
1604 |
35%|███▍ | 639/1840 [00:07<00:14, 83.45it/s]
|
1605 |
35%|███▌ | 649/1840 [00:07<00:13, 85.57it/s]
|
1606 |
36%|███▌ | 658/1840 [00:08<00:14, 81.64it/s]
|
1607 |
36%|███▋ | 667/1840 [00:08<00:14, 80.85it/s]
|
1608 |
37%|███▋ | 677/1840 [00:08<00:13, 84.92it/s]
|
1609 |
37%|███▋ | 686/1840 [00:08<00:13, 82.87it/s]
|
1610 |
38%|███▊ | 695/1840 [00:08<00:13, 83.04it/s]
|
1611 |
38%|███▊ | 705/1840 [00:08<00:13, 86.04it/s]
|
1612 |
39%|███▉ | 714/1840 [00:08<00:13, 84.27it/s]
|
1613 |
39%|███▉ | 724/1840 [00:08<00:12, 87.27it/s]
|
1614 |
40%|███▉ | 734/1840 [00:08<00:12, 89.45it/s]
|
1615 |
40%|████ | 743/1840 [00:09<00:12, 89.01it/s]
|
1616 |
41%|████ | 752/1840 [00:09<00:12, 86.83it/s]
|
1617 |
41%|████▏ | 762/1840 [00:09<00:12, 89.06it/s]
|
1618 |
42%|████▏ | 771/1840 [00:09<00:12, 87.52it/s]
|
1619 |
42%|████▏ | 780/1840 [00:09<00:12, 87.85it/s]
|
1620 |
43%|████▎ | 789/1840 [00:09<00:12, 84.43it/s]
|
1621 |
43%|████▎ | 798/1840 [00:09<00:12, 84.40it/s]
|
1622 |
44%|████▍ | 807/1840 [00:09<00:12, 82.54it/s]
|
1623 |
44%|████▍ | 816/1840 [00:09<00:12, 83.63it/s]
|
1624 |
45%|████▍ | 825/1840 [00:10<00:12, 84.00it/s]
|
1625 |
45%|████▌ | 835/1840 [00:10<00:11, 87.17it/s]
|
1626 |
46%|████▌ | 844/1840 [00:10<00:12, 82.78it/s]
|
1627 |
46%|████▋ | 853/1840 [00:10<00:11, 84.72it/s]
|
1628 |
47%|████▋ | 863/1840 [00:10<00:11, 86.79it/s]
|
1629 |
47%|████▋ | 873/1840 [00:10<00:11, 86.72it/s]
|
1630 |
48%|████▊ | 882/1840 [00:10<00:11, 82.75it/s]
|
1631 |
48%|████▊ | 891/1840 [00:10<00:11, 82.52it/s]
|
1632 |
49%|████▉ | 900/1840 [00:10<00:11, 81.40it/s]
|
1633 |
49%|████▉ | 910/1840 [00:11<00:10, 85.07it/s]
|
1634 |
50%|████▉ | 919/1840 [00:11<00:10, 86.09it/s]
|
1635 |
50%|█████ | 929/1840 [00:11<00:10, 87.65it/s]
|
1636 |
51%|█████ | 938/1840 [00:11<00:10, 84.08it/s]
|
1637 |
51%|█████▏ | 947/1840 [00:11<00:10, 84.62it/s]
|
1638 |
52%|█████▏ | 956/1840 [00:11<00:10, 81.28it/s]
|
1639 |
52%|█████▏ | 965/1840 [00:11<00:10, 81.73it/s]
|
1640 |
53%|█████▎ | 975/1840 [00:11<00:10, 84.56it/s]
|
1641 |
53%|█████▎ | 984/1840 [00:11<00:10, 81.54it/s]
|
1642 |
54%|█████▍ | 994/1840 [00:12<00:10, 84.11it/s]
|
1643 |
55%|█████▍ | 1003/1840 [00:12<00:10, 82.91it/s]
|
1644 |
55%|█████▌ | 1012/1840 [00:12<00:10, 81.54it/s]
|
1645 |
55%|█████▌ | 1021/1840 [00:12<00:09, 82.96it/s]
|
1646 |
56%|█████▌ | 1031/1840 [00:12<00:09, 86.38it/s]
|
1647 |
57%|█████▋ | 1041/1840 [00:12<00:09, 86.05it/s]
|
1648 |
57%|█████▋ | 1050/1840 [00:12<00:09, 85.53it/s]
|
1649 |
58%|█████▊ | 1059/1840 [00:12<00:09, 84.24it/s]
|
1650 |
58%|█████▊ | 1068/1840 [00:12<00:09, 83.89it/s]
|
1651 |
59%|█████▊ | 1078/1840 [00:13<00:08, 86.49it/s]
|
1652 |
59%|█████▉ | 1088/1840 [00:13<00:08, 88.79it/s]
|
1653 |
60%|█████▉ | 1098/1840 [00:13<00:08, 90.45it/s]
|
1654 |
60%|██████ | 1108/1840 [00:13<00:08, 90.80it/s]
|
1655 |
61%|██████ | 1118/1840 [00:13<00:08, 86.64it/s]
|
1656 |
61%|██████▏ | 1127/1840 [00:13<00:08, 85.05it/s]
|
1657 |
62%|██████▏ | 1137/1840 [00:13<00:08, 86.61it/s]
|
1658 |
62%|██████▏ | 1146/1840 [00:13<00:07, 87.34it/s]
|
1659 |
63%|██████▎ | 1155/1840 [00:13<00:07, 87.26it/s]
|
1660 |
63%|██████▎ | 1165/1840 [00:14<00:07, 88.13it/s]
|
1661 |
64%|██████▍ | 1174/1840 [00:14<00:07, 83.58it/s]
|
1662 |
64%|██████▍ | 1183/1840 [00:14<00:07, 84.91it/s]
|
1663 |
65%|██████▍ | 1192/1840 [00:14<00:07, 81.30it/s]
|
1664 |
65%|██████▌ | 1202/1840 [00:14<00:07, 85.01it/s]
|
1665 |
66%|██████▌ | 1211/1840 [00:14<00:07, 84.77it/s]
|
1666 |
66%|██████▋ | 1220/1840 [00:14<00:07, 80.78it/s]
|
1667 |
67%|██████▋ | 1229/1840 [00:14<00:07, 77.99it/s]
|
1668 |
67%|██████▋ | 1239/1840 [00:14<00:07, 82.43it/s]
|
1669 |
68%|██████▊ | 1249/1840 [00:15<00:07, 84.02it/s]
|
1670 |
68%|██████▊ | 1259/1840 [00:15<00:06, 86.05it/s]
|
1671 |
69%|██████▉ | 1268/1840 [00:15<00:07, 81.33it/s]
|
1672 |
69%|██████▉ | 1277/1840 [00:15<00:06, 81.61it/s]
|
1673 |
70%|██████▉ | 1286/1840 [00:15<00:06, 83.73it/s]
|
1674 |
70%|███████ | 1295/1840 [00:15<00:06, 85.09it/s]
|
1675 |
71%|███████ | 1305/1840 [00:15<00:06, 87.44it/s]
|
1676 |
71%|███████▏ | 1315/1840 [00:15<00:05, 89.24it/s]
|
1677 |
72%|███████▏ | 1325/1840 [00:15<00:05, 90.82it/s]
|
1678 |
73%|███████▎ | 1335/1840 [00:16<00:05, 89.40it/s]
|
1679 |
73%|███████▎ | 1344/1840 [00:16<00:05, 88.30it/s]
|
1680 |
74%|███████▎ | 1353/1840 [00:16<00:05, 86.55it/s]
|
1681 |
74%|███████▍ | 1362/1840 [00:16<00:05, 85.78it/s]
|
1682 |
75%|███████▍ | 1372/1840 [00:16<00:05, 87.53it/s]
|
1683 |
75%|███████▌ | 1381/1840 [00:16<00:05, 83.66it/s]
|
1684 |
76%|███████▌ | 1391/1840 [00:16<00:05, 86.29it/s]
|
1685 |
76%|███████▌ | 1400/1840 [00:16<00:05, 84.99it/s]
|
1686 |
77%|███████▋ | 1410/1840 [00:16<00:04, 87.43it/s]
|
1687 |
77%|███████▋ | 1420/1840 [00:17<00:04, 89.10it/s]
|
1688 |
78%|███████▊ | 1429/1840 [00:17<00:04, 88.03it/s]
|
1689 |
78%|███████▊ | 1438/1840 [00:17<00:04, 83.40it/s]
|
1690 |
79%|███████▊ | 1447/1840 [00:17<00:04, 80.09it/s]
|
1691 |
79%|███████▉ | 1456/1840 [00:17<00:04, 79.92it/s]
|
1692 |
80%|███████▉ | 1466/1840 [00:17<00:04, 82.65it/s]
|
1693 |
80%|████████ | 1475/1840 [00:17<00:04, 83.62it/s]
|
1694 |
81%|████████ | 1484/1840 [00:17<00:04, 78.30it/s]
|
1695 |
81%|████████ | 1493/1840 [00:17<00:04, 80.11it/s]
|
1696 |
82%|████████▏ | 1502/1840 [00:18<00:04, 75.31it/s]
|
1697 |
82%|████████▏ | 1511/1840 [00:18<00:04, 75.48it/s]
|
1698 |
83%|████████▎ | 1520/1840 [00:18<00:04, 77.35it/s]
|
1699 |
83%|████████▎ | 1529/1840 [00:18<00:03, 79.48it/s]
|
1700 |
84%|████████▎ | 1538/1840 [00:18<00:03, 77.28it/s]
|
1701 |
84%|████████▍ | 1547/1840 [00:18<00:03, 78.65it/s]
|
1702 |
85%|████████▍ | 1556/1840 [00:18<00:03, 79.70it/s]
|
1703 |
85%|████████▌ | 1565/1840 [00:18<00:03, 79.11it/s]
|
1704 |
86%|████████▌ | 1574/1840 [00:18<00:03, 79.32it/s]
|
1705 |
86%|████████▌ | 1582/1840 [00:19<00:03, 76.10it/s]
|
1706 |
86%|████████▋ | 1591/1840 [00:19<00:03, 77.80it/s]
|
1707 |
87%|████████▋ | 1599/1840 [00:19<00:03, 76.77it/s]
|
1708 |
87%|████████▋ | 1608/1840 [00:19<00:02, 78.00it/s]
|
1709 |
88%|████████▊ | 1617/1840 [00:19<00:02, 80.43it/s]
|
1710 |
88%|████████▊ | 1626/1840 [00:19<00:02, 81.36it/s]
|
1711 |
89%|████████▉ | 1635/1840 [00:19<00:02, 71.94it/s]
|
1712 |
89%|████████▉ | 1643/1840 [00:19<00:02, 73.05it/s]
|
1713 |
90%|████████▉ | 1652/1840 [00:20<00:02, 75.07it/s]
|
1714 |
90%|█████████ | 1661/1840 [00:20<00:02, 78.13it/s]
|
1715 |
91%|█████████ | 1670/1840 [00:20<00:02, 78.46it/s]
|
1716 |
91%|█████████ | 1678/1840 [00:20<00:02, 78.03it/s]
|
1717 |
92%|█████████▏| 1687/1840 [00:20<00:01, 79.05it/s]
|
1718 |
92%|█████████▏| 1697/1840 [00:20<00:01, 82.97it/s]
|
1719 |
93%|█████████▎| 1706/1840 [00:20<00:01, 80.42it/s]
|
1720 |
93%|██���██████▎| 1715/1840 [00:20<00:01, 78.43it/s]
|
1721 |
94%|█████████▎| 1724/1840 [00:20<00:01, 80.51it/s]
|
1722 |
94%|█████████▍| 1733/1840 [00:21<00:01, 77.32it/s]
|
1723 |
95%|█████████▍| 1742/1840 [00:21<00:01, 80.56it/s]
|
1724 |
95%|█████████▌| 1752/1840 [00:21<00:01, 83.60it/s]
|
1725 |
96%|█████████▌| 1761/1840 [00:21<00:00, 84.69it/s]
|
1726 |
96%|█████████▌| 1770/1840 [00:21<00:00, 82.30it/s]
|
1727 |
97%|█████████▋| 1779/1840 [00:21<00:00, 82.74it/s]
|
1728 |
97%|█████████▋| 1788/1840 [00:21<00:00, 81.59it/s]
|
1729 |
98%|█████████▊| 1797/1840 [00:21<00:00, 83.44it/s]
|
1730 |
98%|█████████▊| 1806/1840 [00:21<00:00, 79.67it/s]
|
1731 |
99%|█████████▊| 1815/1840 [00:22<00:00, 77.02it/s]
|
1732 |
99%|█████████▉| 1824/1840 [00:22<00:00, 79.80it/s]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1429 |
{'eval_loss': 0.00769586768001318, 'eval_precision': 0.9194876486733761, 'eval_recall': 0.9366262814538676, 'eval_f1': 0.92797783933518, 'eval_accuracy': 0.9987511511734993, 'eval_runtime': 15.2047, 'eval_samples_per_second': 456.832, 'eval_steps_per_second': 57.153, 'epoch': 10.0}
|
1430 |
{'train_runtime': 2196.5741, 'train_samples_per_second': 147.716, 'train_steps_per_second': 2.308, 'train_loss': 0.0028968164414402532, 'epoch': 10.0}
|
1431 |
|
1432 |
+
***** train metrics *****
|
1433 |
+
epoch = 10.0
|
1434 |
+
total_flos = 12990183GF
|
1435 |
+
train_loss = 0.0029
|
1436 |
+
train_runtime = 0:36:36.57
|
1437 |
+
train_samples = 32447
|
1438 |
+
train_samples_per_second = 147.716
|
1439 |
+
train_steps_per_second = 2.308
|
1440 |
+
09/09/2024 13:27:22 - INFO - __main__ - *** Evaluate ***
|
1441 |
+
[INFO|trainer.py:811] 2024-09-09 13:27:22,340 >> The following columns in the evaluation set don't have a corresponding argument in `BertForTokenClassification.forward` and have been ignored: id, tokens, ner_tags. If id, tokens, ner_tags are not expected by `BertForTokenClassification.forward`, you can safely ignore this message.
|
1442 |
+
[INFO|trainer.py:3819] 2024-09-09 13:27:22,343 >>
|
1443 |
+
***** Running Evaluation *****
|
1444 |
+
[INFO|trainer.py:3821] 2024-09-09 13:27:22,343 >> Num examples = 6946
|
1445 |
+
[INFO|trainer.py:3824] 2024-09-09 13:27:22,343 >> Batch size = 8
|
1446 |
+
|
1447 |
0%| | 0/869 [00:00<?, ?it/s]
|
1448 |
1%| | 10/869 [00:00<00:09, 93.14it/s]
|
1449 |
2%|▏ | 20/869 [00:00<00:10, 79.68it/s]
|
1450 |
3%|▎ | 29/869 [00:00<00:10, 78.36it/s]
|
1451 |
4%|▍ | 37/869 [00:00<00:11, 75.35it/s]
|
1452 |
5%|▌ | 46/869 [00:00<00:10, 78.54it/s]
|
1453 |
6%|▋ | 55/869 [00:00<00:10, 81.34it/s]
|
1454 |
7%|▋ | 64/869 [00:00<00:10, 77.39it/s]
|
1455 |
8%|▊ | 72/869 [00:00<00:10, 77.10it/s]
|
1456 |
9%|▉ | 81/869 [00:01<00:09, 80.79it/s]
|
1457 |
10%|█ | 90/869 [00:01<00:09, 83.27it/s]
|
1458 |
12%|█▏ | 100/869 [00:01<00:08, 85.89it/s]
|
1459 |
13%|█▎ | 109/869 [00:01<00:09, 82.19it/s]
|
1460 |
14%|█▎ | 118/869 [00:01<00:09, 80.71it/s]
|
1461 |
15%|█▍ | 127/869 [00:01<00:09, 79.46it/s]
|
1462 |
16%|█▌ | 136/869 [00:01<00:09, 80.95it/s]
|
1463 |
17%|█▋ | 145/869 [00:01<00:09, 76.58it/s]
|
1464 |
18%|█▊ | 154/869 [00:01<00:09, 78.77it/s]
|
1465 |
19%|█▉ | 163/869 [00:02<00:08, 78.83it/s]
|
1466 |
20%|█▉ | 171/869 [00:02<00:09, 76.42it/s]
|
1467 |
21%|██ | 179/869 [00:02<00:09, 75.56it/s]
|
1468 |
22%|██▏ | 188/869 [00:02<00:08, 77.42it/s]
|
1469 |
23%|██▎ | 196/869 [00:02<00:09, 74.78it/s]
|
1470 |
24%|██▎ | 205/869 [00:02<00:08, 77.47it/s]
|
1471 |
25%|██▍ | 214/869 [00:02<00:08, 79.04it/s]
|
1472 |
26%|██▌ | 223/869 [00:02<00:08, 80.38it/s]
|
1473 |
27%|██▋ | 232/869 [00:02<00:08, 76.59it/s]
|
1474 |
28%|██▊ | 240/869 [00:03<00:08, 77.10it/s]
|
1475 |
29%|██▊ | 248/869 [00:03<00:08, 71.77it/s]
|
1476 |
30%|██▉ | 257/869 [00:03<00:08, 74.54it/s]
|
1477 |
30%|███ | 265/869 [00:03<00:08, 73.96it/s]
|
1478 |
31%|███▏ | 273/869 [00:03<00:07, 74.71it/s]
|
1479 |
32%|███▏ | 281/869 [00:03<00:07, 74.68it/s]
|
1480 |
33%|███▎ | 289/869 [00:03<00:07, 73.95it/s]
|
1481 |
34%|███▍ | 297/869 [00:03<00:07, 74.29it/s]
|
1482 |
35%|███▌ | 305/869 [00:03<00:08, 70.32it/s]
|
1483 |
36%|███▌ | 313/869 [00:04<00:07, 71.72it/s]
|
1484 |
37%|███▋ | 321/869 [00:04<00:07, 71.00it/s]
|
1485 |
38%|███▊ | 330/869 [00:04<00:07, 74.74it/s]
|
1486 |
39%|███▉ | 339/869 [00:04<00:06, 76.71it/s]
|
1487 |
40%|███▉ | 347/869 [00:04<00:07, 72.09it/s]
|
1488 |
41%|████ | 355/869 [00:04<00:07, 72.99it/s]
|
1489 |
42%|████▏ | 364/869 [00:04<00:06, 76.76it/s]
|
1490 |
43%|████▎ | 373/869 [00:04<00:06, 74.39it/s]
|
1491 |
44%|████▍ | 381/869 [00:04<00:06, 75.28it/s]
|
1492 |
45%|████▍ | 389/869 [00:05<00:06, 70.47it/s]
|
1493 |
46%|████▌ | 398/869 [00:05<00:06, 73.16it/s]
|
1494 |
47%|████▋ | 407/869 [00:05<00:06, 75.53it/s]
|
1495 |
48%|████▊ | 416/869 [00:05<00:05, 78.44it/s]
|
1496 |
49%|████▉ | 424/869 [00:05<00:05, 78.67it/s]
|
1497 |
50%|████▉ | 433/869 [00:05<00:05, 79.51it/s]
|
1498 |
51%|█████ | 441/869 [00:05<00:05, 77.23it/s]
|
1499 |
52%|█████▏ | 449/869 [00:05<00:05, 75.66it/s]
|
1500 |
53%|█████▎ | 457/869 [00:05<00:05, 76.56it/s]
|
1501 |
54%|█████▎ | 465/869 [00:06<00:05, 74.67it/s]
|
1502 |
55%|█████▍ | 475/869 [00:06<00:04, 79.79it/s]
|
1503 |
56%|█████▌ | 484/869 [00:06<00:04, 82.19it/s]
|
1504 |
57%|█████▋ | 493/869 [00:06<00:04, 76.64it/s]
|
1505 |
58%|█████▊ | 501/869 [00:06<00:04, 76.35it/s]
|
1506 |
59%|█████▊ | 509/869 [00:06<00:04, 73.64it/s]
|
1507 |
60%|█████▉ | 518/869 [00:06<00:04, 76.46it/s]
|
1508 |
61%|██████ | 526/869 [00:06<00:04, 71.73it/s]
|
1509 |
61%|██████▏ | 534/869 [00:06<00:04, 73.69it/s]
|
1510 |
62%|██████▏ | 542/869 [00:07<00:04, 70.92it/s]
|
1511 |
63%|██████▎ | 551/869 [00:07<00:04, 74.82it/s]
|
1512 |
64%|██████▍ | 559/869 [00:07<00:04, 74.53it/s]
|
1513 |
65%|██████▌ | 567/869 [00:07<00:04, 73.79it/s]
|
1514 |
66%|██████▌ | 575/869 [00:07<00:03, 74.82it/s]
|
1515 |
67%|██████▋ | 583/869 [00:07<00:03, 73.69it/s]
|
1516 |
68%|██████▊ | 591/869 [00:07<00:03, 74.15it/s]
|
1517 |
69%|██████▉ | 600/869 [00:07<00:03, 77.09it/s]
|
1518 |
70%|███████ | 609/869 [00:07<00:03, 78.40it/s]
|
1519 |
71%|███████ | 617/869 [00:08<00:03, 77.00it/s]
|
1520 |
72%|███████▏ | 625/869 [00:08<00:03, 75.42it/s]
|
1521 |
73%|███████▎ | 633/869 [00:08<00:03, 75.64it/s]
|
1522 |
74%|███████▍ | 641/869 [00:08<00:03, 75.26it/s]
|
1523 |
75%|███████▍ | 650/869 [00:08<00:02, 78.48it/s]
|
1524 |
76%|███████▌ | 658/869 [00:08<00:02, 77.25it/s]
|
1525 |
77%|███████▋ | 667/869 [00:08<00:02, 78.48it/s]
|
1526 |
78%|███████▊ | 677/869 [00:08<00:02, 82.17it/s]
|
1527 |
79%|███████▉ | 686/869 [00:09<00:02, 70.63it/s]
|
1528 |
80%|███████▉ | 694/869 [00:09<00:02, 72.95it/s]
|
1529 |
81%|████████ | 702/869 [00:09<00:02, 72.96it/s]
|
1530 |
82%|████████▏ | 711/869 [00:09<00:02, 75.37it/s]
|
1531 |
83%|████████▎ | 719/869 [00:09<00:01, 75.52it/s]
|
1532 |
84%|████████▍ | 728/869 [00:09<00:01, 77.16it/s]
|
1533 |
85%|████████▍ | 736/869 [00:09<00:01, 77.53it/s]
|
1534 |
86%|████████▌ | 744/869 [00:09<00:01, 77.74it/s]
|
1535 |
87%|████████▋ | 752/869 [00:09<00:01, 74.45it/s]
|
1536 |
88%|████████▊ | 761/869 [00:09<00:01, 77.76it/s]
|
1537 |
88%|████████▊ | 769/869 [00:10<00:01, 73.83it/s]
|
1538 |
89%|████████▉ | 777/869 [00:10<00:01, 65.48it/s]
|
1539 |
90%|█████████ | 785/869 [00:10<00:01, 67.59it/s]
|
1540 |
91%|█████████▏| 794/869 [00:10<00:01, 71.22it/s]
|
1541 |
92%|█████████▏| 802/869 [00:10<00:00, 73.53it/s]
|
1542 |
93%|█████████▎| 810/869 [00:10<00:00, 74.76it/s]
|
1543 |
94%|█████████▍| 818/869 [00:10<00:00, 75.19it/s]
|
1544 |
95%|█████████▌| 826/869 [00:10<00:00, 75.37it/s]
|
1545 |
96%|█████████▌| 834/869 [00:10<00:00, 74.91it/s]
|
1546 |
97%|█████████▋| 843/869 [00:11<00:00, 77.97it/s]
|
1547 |
98%|█████████▊| 852/869 [00:11<00:00, 79.15it/s]
|
1548 |
99%|█████████▉| 860/869 [00:11<00:00, 74.82it/s]
|
1549 |
+
***** eval metrics *****
|
1550 |
+
epoch = 10.0
|
1551 |
+
eval_accuracy = 0.9988
|
1552 |
+
eval_f1 = 0.9335
|
1553 |
+
eval_loss = 0.0076
|
1554 |
+
eval_precision = 0.925
|
1555 |
+
eval_recall = 0.9422
|
1556 |
+
eval_runtime = 0:00:15.18
|
1557 |
+
eval_samples = 6946
|
1558 |
+
eval_samples_per_second = 457.519
|
1559 |
+
eval_steps_per_second = 57.239
|
1560 |
+
09/09/2024 13:27:37 - INFO - __main__ - *** Predict ***
|
1561 |
+
[INFO|trainer.py:811] 2024-09-09 13:27:37,532 >> The following columns in the test set don't have a corresponding argument in `BertForTokenClassification.forward` and have been ignored: id, tokens, ner_tags. If id, tokens, ner_tags are not expected by `BertForTokenClassification.forward`, you can safely ignore this message.
|
1562 |
+
[INFO|trainer.py:3819] 2024-09-09 13:27:37,534 >>
|
1563 |
+
***** Running Prediction *****
|
1564 |
+
[INFO|trainer.py:3821] 2024-09-09 13:27:37,534 >> Num examples = 14715
|
1565 |
+
[INFO|trainer.py:3824] 2024-09-09 13:27:37,534 >> Batch size = 8
|
1566 |
+
|
1567 |
0%| | 0/1840 [00:00<?, ?it/s]
|
1568 |
1%| | 11/1840 [00:00<00:18, 98.85it/s]
|
1569 |
1%| | 21/1840 [00:00<00:22, 79.68it/s]
|
1570 |
2%|▏ | 30/1840 [00:00<00:22, 79.32it/s]
|
1571 |
2%|▏ | 39/1840 [00:00<00:22, 79.99it/s]
|
1572 |
3%|▎ | 48/1840 [00:00<00:22, 81.01it/s]
|
1573 |
3%|▎ | 57/1840 [00:00<00:22, 80.70it/s]
|
1574 |
4%|▎ | 66/1840 [00:00<00:22, 78.15it/s]
|
1575 |
4%|▍ | 74/1840 [00:00<00:22, 78.25it/s]
|
1576 |
5%|▍ | 83/1840 [00:01<00:21, 80.09it/s]
|
1577 |
5%|▌ | 92/1840 [00:01<00:21, 79.74it/s]
|
1578 |
6%|▌ | 102/1840 [00:01<00:20, 83.78it/s]
|
1579 |
6%|▌ | 111/1840 [00:01<00:20, 84.96it/s]
|
1580 |
7%|▋ | 120/1840 [00:01<00:20, 83.45it/s]
|
1581 |
7%|▋ | 129/1840 [00:01<00:21, 79.72it/s]
|
1582 |
8%|▊ | 138/1840 [00:01<00:20, 81.35it/s]
|
1583 |
8%|▊ | 147/1840 [00:01<00:20, 82.23it/s]
|
1584 |
8%|▊ | 156/1840 [00:01<00:21, 78.29it/s]
|
1585 |
9%|▉ | 164/1840 [00:02<00:21, 76.51it/s]
|
1586 |
9%|▉ | 173/1840 [00:02<00:21, 78.43it/s]
|
1587 |
10%|▉ | 183/1840 [00:02<00:19, 82.86it/s]
|
1588 |
10%|█ | 192/1840 [00:02<00:19, 84.17it/s]
|
1589 |
11%|█ | 201/1840 [00:02<00:19, 82.31it/s]
|
1590 |
11%|█▏ | 210/1840 [00:02<00:20, 79.83it/s]
|
1591 |
12%|█▏ | 219/1840 [00:02<00:20, 80.69it/s]
|
1592 |
12%|█▏ | 228/1840 [00:02<00:19, 82.07it/s]
|
1593 |
13%|█▎ | 237/1840 [00:02<00:21, 76.28it/s]
|
1594 |
13%|█▎ | 246/1840 [00:03<00:20, 78.24it/s]
|
1595 |
14%|█▍ | 254/1840 [00:03<00:20, 78.47it/s]
|
1596 |
14%|█▍ | 262/1840 [00:03<00:20, 78.54it/s]
|
1597 |
15%|█▍ | 270/1840 [00:03<00:20, 78.47it/s]
|
1598 |
15%|█▌ | 280/1840 [00:03<00:18, 83.71it/s]
|
1599 |
16%|█▌ | 290/1840 [00:03<00:18, 83.65it/s]
|
1600 |
16%|█▋ | 299/1840 [00:03<00:18, 85.16it/s]
|
1601 |
17%|█▋ | 308/1840 [00:03<00:18, 83.08it/s]
|
1602 |
17%|█▋ | 317/1840 [00:03<00:17, 84.68it/s]
|
1603 |
18%|█▊ | 326/1840 [00:04<00:18, 83.75it/s]
|
1604 |
18%|█▊ | 335/1840 [00:04<00:18, 82.34it/s]
|
1605 |
19%|█▉ | 345/1840 [00:04<00:17, 84.84it/s]
|
1606 |
19%|█▉ | 354/1840 [00:04<00:18, 80.58it/s]
|
1607 |
20%|█▉ | 363/1840 [00:04<00:18, 80.45it/s]
|
1608 |
20%|██ | 373/1840 [00:04<00:17, 82.94it/s]
|
1609 |
21%|██ | 382/1840 [00:04<00:17, 84.75it/s]
|
1610 |
21%|██▏ | 391/1840 [00:04<00:17, 83.12it/s]
|
1611 |
22%|██▏ | 400/1840 [00:04<00:17, 81.50it/s]
|
1612 |
22%|██▏ | 409/1840 [00:05<00:17, 82.12it/s]
|
1613 |
23%|██▎ | 418/1840 [00:05<00:17, 79.95it/s]
|
1614 |
23%|██▎ | 427/1840 [00:05<00:17, 80.56it/s]
|
1615 |
24%|██▎ | 436/1840 [00:05<00:17, 79.79it/s]
|
1616 |
24%|██▍ | 445/1840 [00:05<00:17, 80.57it/s]
|
1617 |
25%|██▍ | 454/1840 [00:05<00:17, 80.30it/s]
|
1618 |
25%|██▌ | 463/1840 [00:05<00:16, 82.64it/s]
|
1619 |
26%|██▌ | 472/1840 [00:05<00:16, 84.64it/s]
|
1620 |
26%|██▌ | 481/1840 [00:05<00:17, 76.17it/s]
|
1621 |
27%|██▋ | 490/1840 [00:06<00:17, 79.25it/s]
|
1622 |
27%|██▋ | 499/1840 [00:06<00:17, 76.61it/s]
|
1623 |
28%|██▊ | 508/1840 [00:06<00:17, 77.81it/s]
|
1624 |
28%|██▊ | 518/1840 [00:06<00:16, 81.49it/s]
|
1625 |
29%|██▊ | 527/1840 [00:06<00:15, 82.26it/s]
|
1626 |
29%|██▉ | 536/1840 [00:06<00:16, 81.29it/s]
|
1627 |
30%|██▉ | 545/1840 [00:06<00:15, 81.42it/s]
|
1628 |
30%|███ | 554/1840 [00:06<00:15, 82.78it/s]
|
1629 |
31%|███ | 563/1840 [00:06<00:15, 80.10it/s]
|
1630 |
31%|███ | 573/1840 [00:07<00:15, 83.39it/s]
|
1631 |
32%|███▏ | 583/1840 [00:07<00:14, 85.46it/s]
|
1632 |
32%|███▏ | 592/1840 [00:07<00:15, 82.90it/s]
|
1633 |
33%|███▎ | 601/1840 [00:07<00:15, 81.01it/s]
|
1634 |
33%|███▎ | 611/1840 [00:07<00:14, 82.55it/s]
|
1635 |
34%|███▎ | 620/1840 [00:07<00:15, 79.88it/s]
|
1636 |
34%|███▍ | 629/1840 [00:07<00:15, 79.21it/s]
|
1637 |
35%|███▍ | 639/1840 [00:07<00:14, 83.45it/s]
|
1638 |
35%|███▌ | 649/1840 [00:07<00:13, 85.57it/s]
|
1639 |
36%|███▌ | 658/1840 [00:08<00:14, 81.64it/s]
|
1640 |
36%|███▋ | 667/1840 [00:08<00:14, 80.85it/s]
|
1641 |
37%|███▋ | 677/1840 [00:08<00:13, 84.92it/s]
|
1642 |
37%|███▋ | 686/1840 [00:08<00:13, 82.87it/s]
|
1643 |
38%|███▊ | 695/1840 [00:08<00:13, 83.04it/s]
|
1644 |
38%|███▊ | 705/1840 [00:08<00:13, 86.04it/s]
|
1645 |
39%|███▉ | 714/1840 [00:08<00:13, 84.27it/s]
|
1646 |
39%|███▉ | 724/1840 [00:08<00:12, 87.27it/s]
|
1647 |
40%|███▉ | 734/1840 [00:08<00:12, 89.45it/s]
|
1648 |
40%|████ | 743/1840 [00:09<00:12, 89.01it/s]
|
1649 |
41%|████ | 752/1840 [00:09<00:12, 86.83it/s]
|
1650 |
41%|████▏ | 762/1840 [00:09<00:12, 89.06it/s]
|
1651 |
42%|████▏ | 771/1840 [00:09<00:12, 87.52it/s]
|
1652 |
42%|████▏ | 780/1840 [00:09<00:12, 87.85it/s]
|
1653 |
43%|████▎ | 789/1840 [00:09<00:12, 84.43it/s]
|
1654 |
43%|████▎ | 798/1840 [00:09<00:12, 84.40it/s]
|
1655 |
44%|████▍ | 807/1840 [00:09<00:12, 82.54it/s]
|
1656 |
44%|████▍ | 816/1840 [00:09<00:12, 83.63it/s]
|
1657 |
45%|████▍ | 825/1840 [00:10<00:12, 84.00it/s]
|
1658 |
45%|████▌ | 835/1840 [00:10<00:11, 87.17it/s]
|
1659 |
46%|████▌ | 844/1840 [00:10<00:12, 82.78it/s]
|
1660 |
46%|████▋ | 853/1840 [00:10<00:11, 84.72it/s]
|
1661 |
47%|████▋ | 863/1840 [00:10<00:11, 86.79it/s]
|
1662 |
47%|████▋ | 873/1840 [00:10<00:11, 86.72it/s]
|
1663 |
48%|████▊ | 882/1840 [00:10<00:11, 82.75it/s]
|
1664 |
48%|████▊ | 891/1840 [00:10<00:11, 82.52it/s]
|
1665 |
49%|████▉ | 900/1840 [00:10<00:11, 81.40it/s]
|
1666 |
49%|████▉ | 910/1840 [00:11<00:10, 85.07it/s]
|
1667 |
50%|████▉ | 919/1840 [00:11<00:10, 86.09it/s]
|
1668 |
50%|█████ | 929/1840 [00:11<00:10, 87.65it/s]
|
1669 |
51%|█████ | 938/1840 [00:11<00:10, 84.08it/s]
|
1670 |
51%|█████▏ | 947/1840 [00:11<00:10, 84.62it/s]
|
1671 |
52%|█████▏ | 956/1840 [00:11<00:10, 81.28it/s]
|
1672 |
52%|█████▏ | 965/1840 [00:11<00:10, 81.73it/s]
|
1673 |
53%|█████▎ | 975/1840 [00:11<00:10, 84.56it/s]
|
1674 |
53%|█████▎ | 984/1840 [00:11<00:10, 81.54it/s]
|
1675 |
54%|█████▍ | 994/1840 [00:12<00:10, 84.11it/s]
|
1676 |
55%|█████▍ | 1003/1840 [00:12<00:10, 82.91it/s]
|
1677 |
55%|█████▌ | 1012/1840 [00:12<00:10, 81.54it/s]
|
1678 |
55%|█████▌ | 1021/1840 [00:12<00:09, 82.96it/s]
|
1679 |
56%|█████▌ | 1031/1840 [00:12<00:09, 86.38it/s]
|
1680 |
57%|█████▋ | 1041/1840 [00:12<00:09, 86.05it/s]
|
1681 |
57%|█████▋ | 1050/1840 [00:12<00:09, 85.53it/s]
|
1682 |
58%|█████▊ | 1059/1840 [00:12<00:09, 84.24it/s]
|
1683 |
58%|█████▊ | 1068/1840 [00:12<00:09, 83.89it/s]
|
1684 |
59%|█████▊ | 1078/1840 [00:13<00:08, 86.49it/s]
|
1685 |
59%|█████▉ | 1088/1840 [00:13<00:08, 88.79it/s]
|
1686 |
60%|█████▉ | 1098/1840 [00:13<00:08, 90.45it/s]
|
1687 |
60%|██████ | 1108/1840 [00:13<00:08, 90.80it/s]
|
1688 |
61%|██████ | 1118/1840 [00:13<00:08, 86.64it/s]
|
1689 |
61%|██████▏ | 1127/1840 [00:13<00:08, 85.05it/s]
|
1690 |
62%|██████▏ | 1137/1840 [00:13<00:08, 86.61it/s]
|
1691 |
62%|██████▏ | 1146/1840 [00:13<00:07, 87.34it/s]
|
1692 |
63%|██████▎ | 1155/1840 [00:13<00:07, 87.26it/s]
|
1693 |
63%|██████▎ | 1165/1840 [00:14<00:07, 88.13it/s]
|
1694 |
64%|██████▍ | 1174/1840 [00:14<00:07, 83.58it/s]
|
1695 |
64%|██████▍ | 1183/1840 [00:14<00:07, 84.91it/s]
|
1696 |
65%|██████▍ | 1192/1840 [00:14<00:07, 81.30it/s]
|
1697 |
65%|██████▌ | 1202/1840 [00:14<00:07, 85.01it/s]
|
1698 |
66%|██████▌ | 1211/1840 [00:14<00:07, 84.77it/s]
|
1699 |
66%|██████▋ | 1220/1840 [00:14<00:07, 80.78it/s]
|
1700 |
67%|██████▋ | 1229/1840 [00:14<00:07, 77.99it/s]
|
1701 |
67%|██████▋ | 1239/1840 [00:14<00:07, 82.43it/s]
|
1702 |
68%|██████▊ | 1249/1840 [00:15<00:07, 84.02it/s]
|
1703 |
68%|██████▊ | 1259/1840 [00:15<00:06, 86.05it/s]
|
1704 |
69%|██████▉ | 1268/1840 [00:15<00:07, 81.33it/s]
|
1705 |
69%|██████▉ | 1277/1840 [00:15<00:06, 81.61it/s]
|
1706 |
70%|██████▉ | 1286/1840 [00:15<00:06, 83.73it/s]
|
1707 |
70%|███████ | 1295/1840 [00:15<00:06, 85.09it/s]
|
1708 |
71%|███████ | 1305/1840 [00:15<00:06, 87.44it/s]
|
1709 |
71%|███████▏ | 1315/1840 [00:15<00:05, 89.24it/s]
|
1710 |
72%|███████▏ | 1325/1840 [00:15<00:05, 90.82it/s]
|
1711 |
73%|███████▎ | 1335/1840 [00:16<00:05, 89.40it/s]
|
1712 |
73%|███████▎ | 1344/1840 [00:16<00:05, 88.30it/s]
|
1713 |
74%|███████▎ | 1353/1840 [00:16<00:05, 86.55it/s]
|
1714 |
74%|███████▍ | 1362/1840 [00:16<00:05, 85.78it/s]
|
1715 |
75%|███████▍ | 1372/1840 [00:16<00:05, 87.53it/s]
|
1716 |
75%|███████▌ | 1381/1840 [00:16<00:05, 83.66it/s]
|
1717 |
76%|███████▌ | 1391/1840 [00:16<00:05, 86.29it/s]
|
1718 |
76%|███████▌ | 1400/1840 [00:16<00:05, 84.99it/s]
|
1719 |
77%|███████▋ | 1410/1840 [00:16<00:04, 87.43it/s]
|
1720 |
77%|███████▋ | 1420/1840 [00:17<00:04, 89.10it/s]
|
1721 |
78%|███████▊ | 1429/1840 [00:17<00:04, 88.03it/s]
|
1722 |
78%|███████▊ | 1438/1840 [00:17<00:04, 83.40it/s]
|
1723 |
79%|███████▊ | 1447/1840 [00:17<00:04, 80.09it/s]
|
1724 |
79%|███████▉ | 1456/1840 [00:17<00:04, 79.92it/s]
|
1725 |
80%|███████▉ | 1466/1840 [00:17<00:04, 82.65it/s]
|
1726 |
80%|████████ | 1475/1840 [00:17<00:04, 83.62it/s]
|
1727 |
81%|████████ | 1484/1840 [00:17<00:04, 78.30it/s]
|
1728 |
81%|████████ | 1493/1840 [00:17<00:04, 80.11it/s]
|
1729 |
82%|████████▏ | 1502/1840 [00:18<00:04, 75.31it/s]
|
1730 |
82%|████████▏ | 1511/1840 [00:18<00:04, 75.48it/s]
|
1731 |
83%|████████▎ | 1520/1840 [00:18<00:04, 77.35it/s]
|
1732 |
83%|████████▎ | 1529/1840 [00:18<00:03, 79.48it/s]
|
1733 |
84%|████████▎ | 1538/1840 [00:18<00:03, 77.28it/s]
|
1734 |
84%|████████▍ | 1547/1840 [00:18<00:03, 78.65it/s]
|
1735 |
85%|████████▍ | 1556/1840 [00:18<00:03, 79.70it/s]
|
1736 |
85%|████████▌ | 1565/1840 [00:18<00:03, 79.11it/s]
|
1737 |
86%|████████▌ | 1574/1840 [00:18<00:03, 79.32it/s]
|
1738 |
86%|████████▌ | 1582/1840 [00:19<00:03, 76.10it/s]
|
1739 |
86%|████████▋ | 1591/1840 [00:19<00:03, 77.80it/s]
|
1740 |
87%|████████▋ | 1599/1840 [00:19<00:03, 76.77it/s]
|
1741 |
87%|████████▋ | 1608/1840 [00:19<00:02, 78.00it/s]
|
1742 |
88%|████████▊ | 1617/1840 [00:19<00:02, 80.43it/s]
|
1743 |
88%|████████▊ | 1626/1840 [00:19<00:02, 81.36it/s]
|
1744 |
89%|████████▉ | 1635/1840 [00:19<00:02, 71.94it/s]
|
1745 |
89%|████████▉ | 1643/1840 [00:19<00:02, 73.05it/s]
|
1746 |
90%|████████▉ | 1652/1840 [00:20<00:02, 75.07it/s]
|
1747 |
90%|█████████ | 1661/1840 [00:20<00:02, 78.13it/s]
|
1748 |
91%|█████████ | 1670/1840 [00:20<00:02, 78.46it/s]
|
1749 |
91%|█████████ | 1678/1840 [00:20<00:02, 78.03it/s]
|
1750 |
92%|█████████▏| 1687/1840 [00:20<00:01, 79.05it/s]
|
1751 |
92%|█████████▏| 1697/1840 [00:20<00:01, 82.97it/s]
|
1752 |
93%|█████████▎| 1706/1840 [00:20<00:01, 80.42it/s]
|
1753 |
93%|██���██████▎| 1715/1840 [00:20<00:01, 78.43it/s]
|
1754 |
94%|█████████▎| 1724/1840 [00:20<00:01, 80.51it/s]
|
1755 |
94%|█████████▍| 1733/1840 [00:21<00:01, 77.32it/s]
|
1756 |
95%|█████████▍| 1742/1840 [00:21<00:01, 80.56it/s]
|
1757 |
95%|█████████▌| 1752/1840 [00:21<00:01, 83.60it/s]
|
1758 |
96%|█████████▌| 1761/1840 [00:21<00:00, 84.69it/s]
|
1759 |
96%|█████████▌| 1770/1840 [00:21<00:00, 82.30it/s]
|
1760 |
97%|█████████▋| 1779/1840 [00:21<00:00, 82.74it/s]
|
1761 |
97%|█████████▋| 1788/1840 [00:21<00:00, 81.59it/s]
|
1762 |
98%|█████████▊| 1797/1840 [00:21<00:00, 83.44it/s]
|
1763 |
98%|█████████▊| 1806/1840 [00:21<00:00, 79.67it/s]
|
1764 |
99%|█████████▊| 1815/1840 [00:22<00:00, 77.02it/s]
|
1765 |
99%|█████████▉| 1824/1840 [00:22<00:00, 79.80it/s]
|
1766 |
+
[INFO|trainer.py:3503] 2024-09-09 13:28:06,818 >> Saving model checkpoint to /content/dissertation/scripts/ner/output
|
1767 |
+
[INFO|configuration_utils.py:472] 2024-09-09 13:28:06,820 >> Configuration saved in /content/dissertation/scripts/ner/output/config.json
|
1768 |
+
[INFO|modeling_utils.py:2799] 2024-09-09 13:28:08,001 >> Model weights saved in /content/dissertation/scripts/ner/output/model.safetensors
|
1769 |
+
[INFO|tokenization_utils_base.py:2684] 2024-09-09 13:28:08,002 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
|
1770 |
+
[INFO|tokenization_utils_base.py:2693] 2024-09-09 13:28:08,002 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json
|
1771 |
+
***** predict metrics *****
|
1772 |
+
predict_accuracy = 0.9987
|
1773 |
+
predict_f1 = 0.9203
|
1774 |
+
predict_loss = 0.0078
|
1775 |
+
predict_precision = 0.8938
|
1776 |
+
predict_recall = 0.9483
|
1777 |
+
predict_runtime = 0:00:28.74
|
1778 |
+
predict_samples_per_second = 511.904
|
1779 |
+
predict_steps_per_second = 64.01
|
1780 |
+
|
train_results.json
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
{
|
2 |
-
"epoch":
|
3 |
-
"total_flos":
|
4 |
-
"train_loss": 0.
|
5 |
-
"train_runtime":
|
6 |
-
"train_samples":
|
7 |
-
"train_samples_per_second":
|
8 |
-
"train_steps_per_second":
|
9 |
}
|
|
|
1 |
{
|
2 |
+
"epoch": 10.0,
|
3 |
+
"total_flos": 1.394810359803495e+16,
|
4 |
+
"train_loss": 0.0028968164414402532,
|
5 |
+
"train_runtime": 2196.5741,
|
6 |
+
"train_samples": 32447,
|
7 |
+
"train_samples_per_second": 147.716,
|
8 |
+
"train_steps_per_second": 2.308
|
9 |
}
|
trainer_state.json
CHANGED
@@ -1,166 +1,215 @@
|
|
1 |
{
|
2 |
-
"best_metric": 0.
|
3 |
-
"best_model_checkpoint": "/content/dissertation/scripts/ner/output/checkpoint-
|
4 |
-
"epoch":
|
5 |
"eval_steps": 500,
|
6 |
-
"global_step":
|
7 |
"is_hyper_param_search": false,
|
8 |
"is_local_process_zero": true,
|
9 |
"is_world_process_zero": true,
|
10 |
"log_history": [
|
11 |
{
|
12 |
-
"epoch": 0.
|
13 |
-
"
|
14 |
-
"
|
15 |
-
"
|
16 |
-
"
|
17 |
-
|
18 |
-
|
19 |
-
"
|
20 |
-
"
|
21 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
},
|
23 |
{
|
24 |
"epoch": 2.0,
|
25 |
-
"eval_accuracy": 0.
|
26 |
-
"eval_f1": 0.
|
27 |
-
"eval_loss": 0.
|
28 |
-
"eval_precision": 0.
|
29 |
-
"eval_recall": 0.
|
30 |
-
"eval_runtime":
|
31 |
-
"eval_samples_per_second":
|
32 |
-
"eval_steps_per_second":
|
33 |
-
"step":
|
34 |
-
},
|
35 |
-
{
|
36 |
-
"epoch": 2.
|
37 |
-
"
|
38 |
-
"
|
39 |
-
"
|
40 |
-
"
|
41 |
-
|
42 |
-
|
43 |
-
"
|
44 |
-
"
|
45 |
-
"
|
46 |
-
|
47 |
-
|
48 |
-
"
|
49 |
-
"
|
50 |
-
"
|
51 |
-
"
|
52 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
},
|
54 |
{
|
55 |
"epoch": 4.0,
|
56 |
-
"eval_accuracy": 0.
|
57 |
-
"eval_f1": 0.
|
58 |
-
"eval_loss": 0.
|
59 |
-
"eval_precision": 0.
|
60 |
-
"eval_recall": 0.
|
61 |
-
"eval_runtime":
|
62 |
-
"eval_samples_per_second":
|
63 |
-
"eval_steps_per_second":
|
64 |
-
"step":
|
65 |
-
},
|
66 |
-
{
|
67 |
-
"epoch": 4.
|
68 |
-
"
|
69 |
-
"
|
70 |
-
"
|
71 |
-
"
|
72 |
-
|
73 |
-
|
74 |
-
"
|
75 |
-
"
|
76 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
},
|
78 |
{
|
79 |
"epoch": 6.0,
|
80 |
-
"eval_accuracy": 0.
|
81 |
-
"eval_f1": 0.
|
82 |
-
"eval_loss": 0.
|
83 |
-
"eval_precision": 0.
|
84 |
-
"eval_recall": 0.
|
85 |
-
"eval_runtime":
|
86 |
-
"eval_samples_per_second":
|
87 |
-
"eval_steps_per_second":
|
88 |
-
"step":
|
89 |
-
},
|
90 |
-
{
|
91 |
-
"epoch": 6.430868167202572,
|
92 |
-
"grad_norm": 0.18494442105293274,
|
93 |
-
"learning_rate": 1.774193548387097e-05,
|
94 |
-
"loss": 0.0242,
|
95 |
-
"step": 1000
|
96 |
},
|
97 |
{
|
98 |
-
"epoch": 6.
|
99 |
-
"
|
100 |
-
"
|
101 |
-
"
|
102 |
-
"
|
103 |
-
|
104 |
-
|
105 |
-
"
|
106 |
-
"
|
107 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
},
|
109 |
{
|
110 |
"epoch": 8.0,
|
111 |
-
"eval_accuracy": 0.
|
112 |
-
"eval_f1": 0.
|
113 |
-
"eval_loss": 0.
|
114 |
-
"eval_precision": 0.
|
115 |
-
"eval_recall": 0.
|
116 |
-
"eval_runtime":
|
117 |
-
"eval_samples_per_second":
|
118 |
-
"eval_steps_per_second":
|
119 |
-
"step":
|
120 |
-
},
|
121 |
-
{
|
122 |
-
"epoch": 8.
|
123 |
-
"
|
124 |
-
"
|
125 |
-
"
|
126 |
-
"
|
127 |
-
|
128 |
-
|
129 |
-
"
|
130 |
-
"
|
131 |
-
"
|
132 |
-
|
133 |
-
|
134 |
-
"
|
135 |
-
"
|
136 |
-
"
|
137 |
-
"
|
138 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
},
|
140 |
{
|
141 |
-
"epoch":
|
142 |
-
"
|
143 |
-
"
|
144 |
-
"
|
145 |
-
"
|
146 |
-
"
|
147 |
-
"
|
148 |
-
"eval_samples_per_second": 409.643,
|
149 |
-
"eval_steps_per_second": 51.226,
|
150 |
-
"step": 1550
|
151 |
-
},
|
152 |
-
{
|
153 |
-
"epoch": 9.967845659163988,
|
154 |
-
"step": 1550,
|
155 |
-
"total_flos": 4644619911314910.0,
|
156 |
-
"train_loss": 0.050868147861573,
|
157 |
-
"train_runtime": 855.1929,
|
158 |
-
"train_samples_per_second": 116.102,
|
159 |
-
"train_steps_per_second": 1.812
|
160 |
}
|
161 |
],
|
162 |
"logging_steps": 500,
|
163 |
-
"max_steps":
|
164 |
"num_input_tokens_seen": 0,
|
165 |
"num_train_epochs": 10,
|
166 |
"save_steps": 500,
|
@@ -176,7 +225,7 @@
|
|
176 |
"attributes": {}
|
177 |
}
|
178 |
},
|
179 |
-
"total_flos":
|
180 |
"train_batch_size": 32,
|
181 |
"trial_name": null,
|
182 |
"trial_params": null
|
|
|
1 |
{
|
2 |
+
"best_metric": 0.9335180055401663,
|
3 |
+
"best_model_checkpoint": "/content/dissertation/scripts/ner/output/checkpoint-4056",
|
4 |
+
"epoch": 10.0,
|
5 |
"eval_steps": 500,
|
6 |
+
"global_step": 5070,
|
7 |
"is_hyper_param_search": false,
|
8 |
"is_local_process_zero": true,
|
9 |
"is_world_process_zero": true,
|
10 |
"log_history": [
|
11 |
{
|
12 |
+
"epoch": 0.9861932938856016,
|
13 |
+
"grad_norm": 0.16175590455532074,
|
14 |
+
"learning_rate": 4.5069033530571994e-05,
|
15 |
+
"loss": 0.0183,
|
16 |
+
"step": 500
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 1.0,
|
20 |
+
"eval_accuracy": 0.9985418469009014,
|
21 |
+
"eval_f1": 0.9170464904284412,
|
22 |
+
"eval_loss": 0.005470008589327335,
|
23 |
+
"eval_precision": 0.8974130240856378,
|
24 |
+
"eval_recall": 0.9375582479030755,
|
25 |
+
"eval_runtime": 15.2218,
|
26 |
+
"eval_samples_per_second": 456.319,
|
27 |
+
"eval_steps_per_second": 57.089,
|
28 |
+
"step": 507
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"epoch": 1.972386587771203,
|
32 |
+
"grad_norm": 0.13494741916656494,
|
33 |
+
"learning_rate": 4.0138067061143986e-05,
|
34 |
+
"loss": 0.0043,
|
35 |
+
"step": 1000
|
36 |
},
|
37 |
{
|
38 |
"epoch": 2.0,
|
39 |
+
"eval_accuracy": 0.9985976613735942,
|
40 |
+
"eval_f1": 0.9208103130755064,
|
41 |
+
"eval_loss": 0.005941031500697136,
|
42 |
+
"eval_precision": 0.9099181073703366,
|
43 |
+
"eval_recall": 0.9319664492078286,
|
44 |
+
"eval_runtime": 15.129,
|
45 |
+
"eval_samples_per_second": 459.117,
|
46 |
+
"eval_steps_per_second": 57.439,
|
47 |
+
"step": 1014
|
48 |
+
},
|
49 |
+
{
|
50 |
+
"epoch": 2.9585798816568047,
|
51 |
+
"grad_norm": 0.14869354665279388,
|
52 |
+
"learning_rate": 3.520710059171598e-05,
|
53 |
+
"loss": 0.0022,
|
54 |
+
"step": 1500
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 3.0,
|
58 |
+
"eval_accuracy": 0.998513939664555,
|
59 |
+
"eval_f1": 0.9155963302752294,
|
60 |
+
"eval_loss": 0.005716267507523298,
|
61 |
+
"eval_precision": 0.9015356820234869,
|
62 |
+
"eval_recall": 0.9301025163094129,
|
63 |
+
"eval_runtime": 15.1542,
|
64 |
+
"eval_samples_per_second": 458.356,
|
65 |
+
"eval_steps_per_second": 57.344,
|
66 |
+
"step": 1521
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"epoch": 3.9447731755424065,
|
70 |
+
"grad_norm": 0.15148845314979553,
|
71 |
+
"learning_rate": 3.027613412228797e-05,
|
72 |
+
"loss": 0.0018,
|
73 |
+
"step": 2000
|
74 |
},
|
75 |
{
|
76 |
"epoch": 4.0,
|
77 |
+
"eval_accuracy": 0.9985767309463344,
|
78 |
+
"eval_f1": 0.9227166276346604,
|
79 |
+
"eval_loss": 0.0072021945379674435,
|
80 |
+
"eval_precision": 0.9274952919020716,
|
81 |
+
"eval_recall": 0.9179869524697111,
|
82 |
+
"eval_runtime": 15.3453,
|
83 |
+
"eval_samples_per_second": 452.646,
|
84 |
+
"eval_steps_per_second": 56.63,
|
85 |
+
"step": 2028
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"epoch": 4.930966469428008,
|
89 |
+
"grad_norm": 0.17791983485221863,
|
90 |
+
"learning_rate": 2.5345167652859964e-05,
|
91 |
+
"loss": 0.0009,
|
92 |
+
"step": 2500
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"epoch": 5.0,
|
96 |
+
"eval_accuracy": 0.9986604526553735,
|
97 |
+
"eval_f1": 0.9215236346948141,
|
98 |
+
"eval_loss": 0.0063728527165949345,
|
99 |
+
"eval_precision": 0.9077757685352622,
|
100 |
+
"eval_recall": 0.9356943150046598,
|
101 |
+
"eval_runtime": 15.1945,
|
102 |
+
"eval_samples_per_second": 457.14,
|
103 |
+
"eval_steps_per_second": 57.192,
|
104 |
+
"step": 2535
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"epoch": 5.9171597633136095,
|
108 |
+
"grad_norm": 0.027111981064081192,
|
109 |
+
"learning_rate": 2.0414201183431952e-05,
|
110 |
+
"loss": 0.0007,
|
111 |
+
"step": 3000
|
112 |
},
|
113 |
{
|
114 |
"epoch": 6.0,
|
115 |
+
"eval_accuracy": 0.9987302207462395,
|
116 |
+
"eval_f1": 0.9274826789838336,
|
117 |
+
"eval_loss": 0.006401057820767164,
|
118 |
+
"eval_precision": 0.9194139194139194,
|
119 |
+
"eval_recall": 0.9356943150046598,
|
120 |
+
"eval_runtime": 15.0971,
|
121 |
+
"eval_samples_per_second": 460.088,
|
122 |
+
"eval_steps_per_second": 57.561,
|
123 |
+
"step": 3042
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
},
|
125 |
{
|
126 |
+
"epoch": 6.903353057199211,
|
127 |
+
"grad_norm": 0.0044996230863034725,
|
128 |
+
"learning_rate": 1.5483234714003947e-05,
|
129 |
+
"loss": 0.0004,
|
130 |
+
"step": 3500
|
131 |
+
},
|
132 |
+
{
|
133 |
+
"epoch": 7.0,
|
134 |
+
"eval_accuracy": 0.9987651047916725,
|
135 |
+
"eval_f1": 0.9332096474953618,
|
136 |
+
"eval_loss": 0.00720419455319643,
|
137 |
+
"eval_precision": 0.9289012003693444,
|
138 |
+
"eval_recall": 0.9375582479030755,
|
139 |
+
"eval_runtime": 15.1686,
|
140 |
+
"eval_samples_per_second": 457.919,
|
141 |
+
"eval_steps_per_second": 57.289,
|
142 |
+
"step": 3549
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 7.889546351084813,
|
146 |
+
"grad_norm": 0.0005134351667948067,
|
147 |
+
"learning_rate": 1.0552268244575937e-05,
|
148 |
+
"loss": 0.0004,
|
149 |
+
"step": 4000
|
150 |
},
|
151 |
{
|
152 |
"epoch": 8.0,
|
153 |
+
"eval_accuracy": 0.998772081600759,
|
154 |
+
"eval_f1": 0.9335180055401663,
|
155 |
+
"eval_loss": 0.007628325838595629,
|
156 |
+
"eval_precision": 0.9249771271729186,
|
157 |
+
"eval_recall": 0.9422180801491147,
|
158 |
+
"eval_runtime": 15.1289,
|
159 |
+
"eval_samples_per_second": 459.122,
|
160 |
+
"eval_steps_per_second": 57.44,
|
161 |
+
"step": 4056
|
162 |
+
},
|
163 |
+
{
|
164 |
+
"epoch": 8.875739644970414,
|
165 |
+
"grad_norm": 0.0011633747490122914,
|
166 |
+
"learning_rate": 5.621301775147929e-06,
|
167 |
+
"loss": 0.0003,
|
168 |
+
"step": 4500
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"epoch": 9.0,
|
172 |
+
"eval_accuracy": 0.9987162671280663,
|
173 |
+
"eval_f1": 0.9262672811059908,
|
174 |
+
"eval_loss": 0.00773056922480464,
|
175 |
+
"eval_precision": 0.9161349134001823,
|
176 |
+
"eval_recall": 0.9366262814538676,
|
177 |
+
"eval_runtime": 15.3347,
|
178 |
+
"eval_samples_per_second": 452.96,
|
179 |
+
"eval_steps_per_second": 56.669,
|
180 |
+
"step": 4563
|
181 |
+
},
|
182 |
+
{
|
183 |
+
"epoch": 9.861932938856016,
|
184 |
+
"grad_norm": 0.001042825635522604,
|
185 |
+
"learning_rate": 6.903353057199211e-07,
|
186 |
+
"loss": 0.0002,
|
187 |
+
"step": 5000
|
188 |
+
},
|
189 |
+
{
|
190 |
+
"epoch": 10.0,
|
191 |
+
"eval_accuracy": 0.9987511511734993,
|
192 |
+
"eval_f1": 0.92797783933518,
|
193 |
+
"eval_loss": 0.00769586768001318,
|
194 |
+
"eval_precision": 0.9194876486733761,
|
195 |
+
"eval_recall": 0.9366262814538676,
|
196 |
+
"eval_runtime": 15.2047,
|
197 |
+
"eval_samples_per_second": 456.832,
|
198 |
+
"eval_steps_per_second": 57.153,
|
199 |
+
"step": 5070
|
200 |
},
|
201 |
{
|
202 |
+
"epoch": 10.0,
|
203 |
+
"step": 5070,
|
204 |
+
"total_flos": 1.394810359803495e+16,
|
205 |
+
"train_loss": 0.0028968164414402532,
|
206 |
+
"train_runtime": 2196.5741,
|
207 |
+
"train_samples_per_second": 147.716,
|
208 |
+
"train_steps_per_second": 2.308
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
}
|
210 |
],
|
211 |
"logging_steps": 500,
|
212 |
+
"max_steps": 5070,
|
213 |
"num_input_tokens_seen": 0,
|
214 |
"num_train_epochs": 10,
|
215 |
"save_steps": 500,
|
|
|
225 |
"attributes": {}
|
226 |
}
|
227 |
},
|
228 |
+
"total_flos": 1.394810359803495e+16,
|
229 |
"train_batch_size": 32,
|
230 |
"trial_name": null,
|
231 |
"trial_params": null
|