File size: 3,167 Bytes
0db43d4 43d9f2e 0db43d4 43d9f2e 0db43d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
license: apache-2.0
base_model: t5-base
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: t5-base-finetuned-question-to-answer
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-base-finetuned-question-to-answer
This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4006
- Bleu: 54.0167
- Gen Len: 28.902
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 25
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|
| 1.3089 | 1.0 | 516 | 0.8868 | 35.5598 | 34.108 |
| 1.2622 | 2.0 | 1032 | 0.8313 | 37.1928 | 34.906 |
| 1.2093 | 3.0 | 1548 | 0.7822 | 40.5334 | 31.082 |
| 1.1607 | 4.0 | 2064 | 0.7350 | 41.6835 | 32.294 |
| 1.1269 | 5.0 | 2580 | 0.6991 | 41.3956 | 31.084 |
| 1.0765 | 6.0 | 3096 | 0.6644 | 43.152 | 31.324 |
| 1.0551 | 7.0 | 3612 | 0.6305 | 45.2289 | 30.064 |
| 1.0326 | 8.0 | 4128 | 0.5984 | 44.9963 | 30.856 |
| 0.9974 | 9.0 | 4644 | 0.5723 | 45.8182 | 30.08 |
| 0.9847 | 10.0 | 5160 | 0.5474 | 46.6307 | 28.812 |
| 0.9553 | 11.0 | 5676 | 0.5245 | 47.3503 | 30.256 |
| 0.9363 | 12.0 | 6192 | 0.5059 | 48.8164 | 29.258 |
| 0.9218 | 13.0 | 6708 | 0.4872 | 49.1785 | 30.37 |
| 0.9096 | 14.0 | 7224 | 0.4743 | 49.7033 | 29.48 |
| 0.8852 | 15.0 | 7740 | 0.4551 | 50.9333 | 30.21 |
| 0.886 | 16.0 | 8256 | 0.4456 | 51.7962 | 28.472 |
| 0.8694 | 17.0 | 8772 | 0.4351 | 51.9603 | 29.89 |
| 0.8785 | 18.0 | 9288 | 0.4250 | 52.3147 | 29.17 |
| 0.8606 | 19.0 | 9804 | 0.4158 | 52.5438 | 28.96 |
| 0.8632 | 20.0 | 10320 | 0.4082 | 53.7264 | 28.85 |
| 0.8549 | 21.0 | 10836 | 0.4037 | 53.6781 | 28.446 |
| 0.8608 | 22.0 | 11352 | 0.4017 | 53.8526 | 29.088 |
| 0.8644 | 23.0 | 11868 | 0.3999 | 53.8358 | 28.47 |
| 0.8589 | 24.0 | 12384 | 0.3987 | 53.949 | 28.792 |
| 0.8699 | 25.0 | 12900 | 0.4006 | 54.0167 | 28.902 |
### Framework versions
- Transformers 4.36.2
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.15.0
|