File size: 2,411 Bytes
77ad3ab
 
 
 
 
cdc4f22
77ad3ab
 
f6d477e
77ad3ab
 
 
 
 
 
 
 
 
cdc4f22
f6d477e
6712dce
77ad3ab
6712dce
77ad3ab
 
 
f6d477e
77ad3ab
 
 
 
 
 
 
cdc4f22
77ad3ab
cdc4f22
f6d477e
77ad3ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6712dce
 
 
 
 
 
 
 
 
 
 
 
77ad3ab
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- audio-classification
- generated_from_trainer
datasets:
- fleurs
metrics:
- accuracy
model-index:
- name: wav2vec2-base-lang-id
  results:
  - task:
      name: Audio Classification
      type: audio-classification
    dataset:
      name: google/fleurs
      type: fleurs
      config: bn_in
      split: validation
      args: bn_in
    metrics:
    - name: Accuracy
      type: accuracy
      value: 1.0
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-base-lang-id

This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the google/fleurs dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0001
- Accuracy: 1.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 1
- seed: 0
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.0001        | 1.0   | 94   | 0.0001          | 1.0      |
| 0.0001        | 2.0   | 188  | 0.0000          | 1.0      |
| 0.0           | 3.0   | 282  | 0.0000          | 1.0      |
| 0.0           | 4.0   | 376  | 0.0000          | 1.0      |
| 0.0           | 5.0   | 470  | 0.0000          | 1.0      |
| 0.0           | 6.0   | 564  | 0.0000          | 1.0      |
| 0.0           | 7.0   | 658  | 0.0000          | 1.0      |
| 0.0           | 8.0   | 752  | 0.0000          | 1.0      |
| 0.0           | 9.0   | 846  | 0.0000          | 1.0      |
| 0.0           | 10.0  | 940  | 0.0000          | 1.0      |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.2.1+cu121
- Datasets 3.0.0
- Tokenizers 0.19.1