--- base_model: google/paligemma-3b-pt-224 library_name: peft license: gemma tags: - generated_from_trainer model-index: - name: palige_original_lora_32_epo_12 results: [] --- # palige_original_lora_32_epo_12 This model is a fine-tuned version of [google/paligemma-3b-pt-224](https://huggingface.co/google/paligemma-3b-pt-224) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8822 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 40 - optimizer: Use OptimizerNames.ADAMW_HF with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2 - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-------:|:----:|:---------------:| | 4.3289 | 0.3125 | 100 | 2.5898 | | 2.3882 | 0.625 | 200 | 1.7361 | | 1.9019 | 0.9375 | 300 | 1.3873 | | 1.6578 | 1.25 | 400 | 1.2264 | | 1.5708 | 1.5625 | 500 | 1.1162 | | 1.4543 | 1.875 | 600 | 1.0530 | | 1.3442 | 2.1875 | 700 | 0.9998 | | 1.3264 | 2.5 | 800 | 0.9652 | | 1.2714 | 2.8125 | 900 | 0.9281 | | 1.1041 | 3.125 | 1000 | 0.9080 | | 1.1605 | 3.4375 | 1100 | 0.8901 | | 1.16 | 3.75 | 1200 | 0.8842 | | 1.0577 | 4.0625 | 1300 | 0.8620 | | 1.0074 | 4.375 | 1400 | 0.8497 | | 1.0002 | 4.6875 | 1500 | 0.8355 | | 0.9938 | 5.0 | 1600 | 0.8245 | | 0.8815 | 5.3125 | 1700 | 0.8342 | | 0.8922 | 5.625 | 1800 | 0.8133 | | 0.901 | 5.9375 | 1900 | 0.8153 | | 0.8109 | 6.25 | 2000 | 0.8217 | | 0.8084 | 6.5625 | 2100 | 0.8126 | | 0.8453 | 6.875 | 2200 | 0.8100 | | 0.736 | 7.1875 | 2300 | 0.8091 | | 0.732 | 7.5 | 2400 | 0.8186 | | 0.7008 | 7.8125 | 2500 | 0.8007 | | 0.6708 | 8.125 | 2600 | 0.8148 | | 0.6406 | 8.4375 | 2700 | 0.8274 | | 0.6541 | 8.75 | 2800 | 0.8215 | | 0.6345 | 9.0625 | 2900 | 0.8511 | | 0.5534 | 9.375 | 3000 | 0.8355 | | 0.5553 | 9.6875 | 3100 | 0.8398 | | 0.57 | 10.0 | 3200 | 0.8397 | | 0.499 | 10.3125 | 3300 | 0.8666 | | 0.4909 | 10.625 | 3400 | 0.8768 | | 0.5028 | 10.9375 | 3500 | 0.8628 | | 0.4397 | 11.25 | 3600 | 0.9102 | | 0.4378 | 11.5625 | 3700 | 0.8732 | | 0.4248 | 11.875 | 3800 | 0.8822 | ### Framework versions - PEFT 0.13.0 - Transformers 4.46.0.dev0 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0