File size: 1,811 Bytes
3bfcd04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: google/bigbird-pegasus-large-bigpatent
metrics:
- rouge
model-index:
- name: bigbird_lora_multi_lexsum_bfloat16
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bigbird_lora_multi_lexsum_bfloat16

This model is a fine-tuned version of [google/bigbird-pegasus-large-bigpatent](https://huggingface.co/google/bigbird-pegasus-large-bigpatent) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 9.2417
- Rouge1: 0.1892
- Rouge2: 0.0164
- Rougel: 0.1384
- Rougelsum: 0.1384
- Gen Len: 214.7444

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 2

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len  |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:--------:|
| 9.2381        | 1.0   | 648  | 9.2448          | 0.1912 | 0.0175 | 0.1409 | 0.141     | 225.5222 |
| 9.1638        | 2.0   | 1296 | 9.2417          | 0.1892 | 0.0164 | 0.1384 | 0.1384    | 214.7444 |


### Framework versions

- PEFT 0.10.0
- Transformers 4.40.0.dev0
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2