Upload README.md
Browse files
README.md
CHANGED
@@ -1,22 +1,50 @@
|
|
1 |
---
|
|
|
|
|
2 |
license: mit
|
3 |
-
|
4 |
-
-
|
|
|
|
|
|
|
|
|
|
|
5 |
model-index:
|
6 |
-
- name:
|
7 |
-
results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
---
|
9 |
|
10 |
-
<!-- This model card has been generated automatically according to the information
|
11 |
-
probably proofread and complete it, then remove this comment. -->
|
12 |
|
13 |
-
#
|
14 |
|
15 |
-
This model is a fine-tuned version of [deepset/gbert-large](https://huggingface.co/deepset/gbert-large) on
|
16 |
It achieves the following results on the evaluation set:
|
17 |
-
-
|
18 |
-
-
|
19 |
-
-
|
|
|
20 |
|
21 |
## Model description
|
22 |
|
@@ -35,23 +63,16 @@ More information needed
|
|
35 |
### Training hyperparameters
|
36 |
|
37 |
The following hyperparameters were used during training:
|
38 |
-
-
|
39 |
-
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
| 0.1236 | 0.0807 | 0 |
|
46 |
-
| 0.0650 | 0.0781 | 1 |
|
47 |
-
| 0.0420 | 0.0770 | 2 |
|
48 |
-
| 0.0232 | 0.0843 | 3 |
|
49 |
-
| 0.0123 | 0.0985 | 4 |
|
50 |
-
|
51 |
|
52 |
### Framework versions
|
53 |
|
54 |
- Transformers 4.18.0
|
55 |
-
- TensorFlow 2.6.2
|
56 |
- Datasets 1.18.0
|
57 |
- Tokenizers 0.12.1
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- de
|
4 |
license: mit
|
5 |
+
datasets:
|
6 |
+
- germaner
|
7 |
+
metrics:
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
- accuracy
|
12 |
model-index:
|
13 |
+
- name: gbert-large-germaner
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Token Classification
|
17 |
+
type: token-classification
|
18 |
+
dataset:
|
19 |
+
name: germaner
|
20 |
+
type: germaner
|
21 |
+
args: default
|
22 |
+
metrics:
|
23 |
+
- name: precision
|
24 |
+
type: precision
|
25 |
+
value: 0.8693333333333333
|
26 |
+
- name: recall
|
27 |
+
type: recall
|
28 |
+
value: 0.885640362225097
|
29 |
+
- name: f1
|
30 |
+
type: f1
|
31 |
+
value: 0.8774110861903236
|
32 |
+
- name: accuracy
|
33 |
+
type: accuracy
|
34 |
+
value: 0.9784210744831022
|
35 |
---
|
36 |
|
37 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
38 |
+
should probably proofread and complete it, then remove this comment. -->
|
39 |
|
40 |
+
# gbert-large-germaner
|
41 |
|
42 |
+
This model is a fine-tuned version of [deepset/gbert-large](https://huggingface.co/deepset/gbert-large) on the germaner dataset.
|
43 |
It achieves the following results on the evaluation set:
|
44 |
+
- precision: 0.8693
|
45 |
+
- recall: 0.8856
|
46 |
+
- f1: 0.8774
|
47 |
+
- accuracy: 0.9784
|
48 |
|
49 |
## Model description
|
50 |
|
|
|
63 |
### Training hyperparameters
|
64 |
|
65 |
The following hyperparameters were used during training:
|
66 |
+
- num_train_epochs: 5
|
67 |
+
- train_batch_size: 8
|
68 |
+
- eval_batch_size: 8
|
69 |
+
- learning_rate: 2e-05
|
70 |
+
- weight_decay_rate: 0.01
|
71 |
+
- num_warmup_steps: 0
|
72 |
+
- fp16: True
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
### Framework versions
|
75 |
|
76 |
- Transformers 4.18.0
|
|
|
77 |
- Datasets 1.18.0
|
78 |
- Tokenizers 0.12.1
|