File size: 39,837 Bytes
6445525 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 |
###########################################################################################
# #
# This sample shows how to evaluate object detections applying the following metrics: #
# * Precision x Recall curve ----> used by VOC PASCAL 2012) #
# * Average Precision (AP) ----> used by VOC PASCAL 2012) #
# #
# Developed by: Rafael Padilla ([email protected]) #
# SMT - Signal Multimedia and Telecommunications Lab #
# COPPE - Universidade Federal do Rio de Janeiro #
# Last modification: Oct 9th 2018 #
###########################################################################################
import argparse
import glob
import os
import shutil
import sys
import cv2
from enum import Enum
from collections import Counter
import matplotlib.pyplot as plt
import numpy as np
class MethodAveragePrecision(Enum):
"""
Class representing if the coordinates are relative to the
image size or are absolute values.
Developed by: Rafael Padilla
Last modification: Apr 28 2018
"""
EveryPointInterpolation = 1
ElevenPointInterpolation = 2
class CoordinatesType(Enum):
"""
Class representing if the coordinates are relative to the
image size or are absolute values.
Developed by: Rafael Padilla
Last modification: Apr 28 2018
"""
Relative = 1
Absolute = 2
class BBType(Enum):
"""
Class representing if the bounding box is groundtruth or not.
Developed by: Rafael Padilla
Last modification: May 24 2018
"""
GroundTruth = 1
Detected = 2
class BBFormat(Enum):
"""
Class representing the format of a bounding box.
It can be (X,Y,width,height) => XYWH
or (X1,Y1,X2,Y2) => XYX2Y2
Developed by: Rafael Padilla
Last modification: May 24 2018
"""
XYWH = 1
XYX2Y2 = 2
# size => (width, height) of the image
# box => (X1, X2, Y1, Y2) of the bounding box
def convertToRelativeValues(size, box):
dw = 1. / (size[0])
dh = 1. / (size[1])
cx = (box[1] + box[0]) / 2.0
cy = (box[3] + box[2]) / 2.0
w = box[1] - box[0]
h = box[3] - box[2]
x = cx * dw
y = cy * dh
w = w * dw
h = h * dh
# x,y => (bounding_box_center)/width_of_the_image
# w => bounding_box_width / width_of_the_image
# h => bounding_box_height / height_of_the_image
return (x, y, w, h)
# size => (width, height) of the image
# box => (centerX, centerY, w, h) of the bounding box relative to the image
def convertToAbsoluteValues(size, box):
# w_box = round(size[0] * box[2])
# h_box = round(size[1] * box[3])
xIn = round(((2 * float(box[0]) - float(box[2])) * size[0] / 2))
yIn = round(((2 * float(box[1]) - float(box[3])) * size[1] / 2))
xEnd = xIn + round(float(box[2]) * size[0])
yEnd = yIn + round(float(box[3]) * size[1])
if xIn < 0:
xIn = 0
if yIn < 0:
yIn = 0
if xEnd >= size[0]:
xEnd = size[0] - 1
if yEnd >= size[1]:
yEnd = size[1] - 1
return (xIn, yIn, xEnd, yEnd)
def add_bb_into_image(image, bb, color=(255, 0, 0), thickness=2, label=None):
r = int(color[0])
g = int(color[1])
b = int(color[2])
font = cv2.FONT_HERSHEY_SIMPLEX
fontScale = 0.5
fontThickness = 1
x1, y1, x2, y2 = bb.getAbsoluteBoundingBox(BBFormat.XYX2Y2)
x1 = int(x1)
y1 = int(y1)
x2 = int(x2)
y2 = int(y2)
cv2.rectangle(image, (x1, y1), (x2, y2), (b, g, r), thickness)
# Add label
if label is not None:
# Get size of the text box
(tw, th) = cv2.getTextSize(label, font, fontScale, fontThickness)[0]
# Top-left coord of the textbox
(xin_bb, yin_bb) = (x1 + thickness, y1 - th + int(12.5 * fontScale))
# Checking position of the text top-left (outside or inside the bb)
if yin_bb - th <= 0: # if outside the image
yin_bb = y1 + th # put it inside the bb
r_Xin = x1 - int(thickness / 2)
r_Yin = y1 - th - int(thickness / 2)
# Draw filled rectangle to put the text in it
cv2.rectangle(image, (r_Xin, r_Yin - thickness),
(r_Xin + tw + thickness * 3, r_Yin + th + int(12.5 * fontScale)), (b, g, r),
-1)
cv2.putText(image, label, (xin_bb, yin_bb), font, fontScale, (0, 0, 0), fontThickness,
cv2.LINE_AA)
return image
# BoundingBox
class BoundingBox:
def __init__(self,
imageName,
classId,
x,
y,
w,
h,
typeCoordinates=None,
imgSize=None,
bbType=None,
classConfidence=None,
format=None):
"""Constructor.
Args:
imageName: String representing the image name.
classId: String value representing class id.
x: Float value representing the X upper-left coordinate of the bounding box.
y: Float value representing the Y upper-left coordinate of the bounding box.
w: Float value representing the width bounding box.
h: Float value representing the height bounding box.
typeCoordinates: (optional) Enum (Relative or Absolute) represents if the bounding box
coordinates (x,y,w,h) are absolute or relative to size of the image. Default:'Absolute'.
imgSize: (optional) 2D vector (width, height)=>(int, int) represents the size of the
image of the bounding box. If typeCoordinates is 'Relative', imgSize is required.
bbType: (optional) Enum (Groundtruth or Detection) identifies if the bounding box
represents a ground truth or a detection. If it is a detection, the classConfidence has
to be informed.
classConfidence: (optional) Float value representing the confidence of the detected
class. If detectionType is Detection, classConfidence needs to be informed.
format: (optional) Enum (BBFormat.XYWH or BBFormat.XYX2Y2) indicating the format of the
coordinates of the bounding boxes. BBFormat.XYWH: <left> <top> <width> <height>
BBFormat.XYX2Y2: <left> <top> <right> <bottom>.
"""
self._imageName = imageName
self._typeCoordinates = typeCoordinates
if typeCoordinates == CoordinatesType.Relative and imgSize is None:
raise IOError(
'Parameter \'imgSize\' is required. It is necessary to inform the image size.')
if bbType == BBType.Detected and classConfidence is None:
raise IOError(
'For bbType=\'Detection\', it is necessary to inform the classConfidence value.')
# if classConfidence != None and (classConfidence < 0 or classConfidence > 1):
# raise IOError('classConfidence value must be a real value between 0 and 1. Value: %f' %
# classConfidence)
self._classConfidence = classConfidence
self._bbType = bbType
self._classId = classId
self._format = format
# If relative coordinates, convert to absolute values
# For relative coords: (x,y,w,h)=(X_center/img_width , Y_center/img_height)
if (typeCoordinates == CoordinatesType.Relative):
(self._x, self._y, self._w, self._h) = convertToAbsoluteValues(imgSize, (x, y, w, h))
self._width_img = imgSize[0]
self._height_img = imgSize[1]
if format == BBFormat.XYWH:
self._x2 = self._w
self._y2 = self._h
self._w = self._x2 - self._x
self._h = self._y2 - self._y
else:
raise IOError(
'For relative coordinates, the format must be XYWH (x,y,width,height)')
# For absolute coords: (x,y,w,h)=real bb coords
else:
self._x = x
self._y = y
if format == BBFormat.XYWH:
self._w = w
self._h = h
self._x2 = self._x + self._w
self._y2 = self._y + self._h
else: # format == BBFormat.XYX2Y2: <left> <top> <right> <bottom>.
self._x2 = w
self._y2 = h
self._w = self._x2 - self._x
self._h = self._y2 - self._y
if imgSize is None:
self._width_img = None
self._height_img = None
else:
self._width_img = imgSize[0]
self._height_img = imgSize[1]
def getAbsoluteBoundingBox(self, format=None):
if format == BBFormat.XYWH:
return (self._x, self._y, self._w, self._h)
elif format == BBFormat.XYX2Y2:
return (self._x, self._y, self._x2, self._y2)
def getRelativeBoundingBox(self, imgSize=None):
if imgSize is None and self._width_img is None and self._height_img is None:
raise IOError(
'Parameter \'imgSize\' is required. It is necessary to inform the image size.')
if imgSize is None:
return convertToRelativeValues((imgSize[0], imgSize[1]),
(self._x, self._y, self._w, self._h))
else:
return convertToRelativeValues((self._width_img, self._height_img),
(self._x, self._y, self._w, self._h))
def getImageName(self):
return self._imageName
def getConfidence(self):
return self._classConfidence
def getFormat(self):
return self._format
def getClassId(self):
return self._classId
def getImageSize(self):
return (self._width_img, self._height_img)
def getCoordinatesType(self):
return self._typeCoordinates
def getBBType(self):
return self._bbType
@staticmethod
def compare(det1, det2):
det1BB = det1.getAbsoluteBoundingBox(format=BBFormat.XYWH)
det1ImgSize = det1.getImageSize()
det2BB = det2.getAbsoluteBoundingBox(format=BBFormat.XYWH)
det2ImgSize = det2.getImageSize()
if det1.getClassId() == det2.getClassId() and \
det1.classConfidence == det2.classConfidenc() and \
det1BB[0] == det2BB[0] and \
det1BB[1] == det2BB[1] and \
det1BB[2] == det2BB[2] and \
det1BB[3] == det2BB[3] and \
det1ImgSize[0] == det1ImgSize[0] and \
det2ImgSize[1] == det2ImgSize[1]:
return True
return False
@staticmethod
def clone(boundingBox):
absBB = boundingBox.getAbsoluteBoundingBox(format=BBFormat.XYWH)
# return (self._x,self._y,self._x2,self._y2)
newBoundingBox = BoundingBox(
boundingBox.getImageName(),
boundingBox.getClassId(),
absBB[0],
absBB[1],
absBB[2],
absBB[3],
typeCoordinates=boundingBox.getCoordinatesType(),
imgSize=boundingBox.getImageSize(),
bbType=boundingBox.getBBType(),
classConfidence=boundingBox.getConfidence(),
format=BBFormat.XYWH)
return newBoundingBox
#BoundingBoxes
class BoundingBoxes:
def __init__(self):
self._boundingBoxes = []
def addBoundingBox(self, bb):
self._boundingBoxes.append(bb)
def removeBoundingBox(self, _boundingBox):
for d in self._boundingBoxes:
if BoundingBox.compare(d, _boundingBox):
del self._boundingBoxes[d]
return
def removeAllBoundingBoxes(self):
self._boundingBoxes = []
def getBoundingBoxes(self):
return self._boundingBoxes
def getBoundingBoxByClass(self, classId):
boundingBoxes = []
for d in self._boundingBoxes:
if d.getClassId() == classId: # get only specified bounding box type
boundingBoxes.append(d)
return boundingBoxes
def getClasses(self):
classes = []
for d in self._boundingBoxes:
c = d.getClassId()
if c not in classes:
classes.append(c)
return classes
def getBoundingBoxesByType(self, bbType):
# get only specified bb type
return [d for d in self._boundingBoxes if d.getBBType() == bbType]
def getBoundingBoxesByImageName(self, imageName):
# get only specified bb type
return [d for d in self._boundingBoxes if d.getImageName() == imageName]
def count(self, bbType=None):
if bbType is None: # Return all bounding boxes
return len(self._boundingBoxes)
count = 0
for d in self._boundingBoxes:
if d.getBBType() == bbType: # get only specified bb type
count += 1
return count
def clone(self):
newBoundingBoxes = BoundingBoxes()
for d in self._boundingBoxes:
det = BoundingBox.clone(d)
newBoundingBoxes.addBoundingBox(det)
return newBoundingBoxes
def drawAllBoundingBoxes(self, image, imageName):
bbxes = self.getBoundingBoxesByImageName(imageName)
for bb in bbxes:
if bb.getBBType() == BBType.GroundTruth: # if ground truth
image = add_bb_into_image(image, bb, color=(0, 255, 0)) # green
else: # if detection
image = add_bb_into_image(image, bb, color=(255, 0, 0)) # red
return image
###########################################################################################
# #
# Evaluator class: Implements the most popular metrics for object detection #
# #
# Developed by: Rafael Padilla ([email protected]) #
# SMT - Signal Multimedia and Telecommunications Lab #
# COPPE - Universidade Federal do Rio de Janeiro #
# Last modification: Oct 9th 2018 #
###########################################################################################
class Evaluator:
def __init__(self, dataset='ucf24'):
self.dataset = dataset
def GetPascalVOCMetrics(self,
boundingboxes,
IOUThreshold=0.5,
method=None):
"""Get the metrics used by the VOC Pascal 2012 challenge.
Get
Args:
boundingboxes: Object of the class BoundingBoxes representing ground truth and detected
bounding boxes;
IOUThreshold: IOU threshold indicating which detections will be considered TP or FP
(default value = 0.5);
method (default = EveryPointInterpolation): It can be calculated as the implementation
in the official PASCAL VOC toolkit (EveryPointInterpolation), or applying the 11-point
interpolatio as described in the paper "The PASCAL Visual Object Classes(VOC) Challenge"
or EveryPointInterpolation" (ElevenPointInterpolation);
Returns:
A list of dictionaries. Each dictionary contains information and metrics of each class.
The keys of each dictionary are:
dict['class']: class representing the current dictionary;
dict['precision']: array with the precision values;
dict['recall']: array with the recall values;
dict['AP']: average precision;
dict['interpolated precision']: interpolated precision values;
dict['interpolated recall']: interpolated recall values;
dict['total positives']: total number of ground truth positives;
dict['total TP']: total number of True Positive detections;
dict['total FP']: total number of False Negative detections;
"""
ret = [] # list containing metrics (precision, recall, average precision) of each class
# List with all ground truths (Ex: [imageName,class,confidence=1, (bb coordinates XYX2Y2)])
groundTruths = []
# List with all detections (Ex: [imageName,class,confidence,(bb coordinates XYX2Y2)])
detections = []
# Get all classes
classes = []
# Loop through all bounding boxes and separate them into GTs and detections
for bb in boundingboxes.getBoundingBoxes():
# [imageName, class, confidence, (bb coordinates XYX2Y2)]
if bb.getBBType() == BBType.GroundTruth:
groundTruths.append([
bb.getImageName(),
bb.getClassId(), 1,
bb.getAbsoluteBoundingBox(BBFormat.XYX2Y2)
])
else:
detections.append([
bb.getImageName(),
bb.getClassId(),
bb.getConfidence(),
bb.getAbsoluteBoundingBox(BBFormat.XYX2Y2)
])
# get class
if bb.getClassId() not in classes:
classes.append(bb.getClassId())
classes = sorted(classes)
# Precision x Recall is obtained individually by each class
# Loop through by classes
for c in classes:
# Get only detection of class c
dects = []
[dects.append(d) for d in detections if d[1] == c]
# Get only ground truths of class c
gts = []
[gts.append(g) for g in groundTruths if g[1] == c]
npos = len(gts)
# sort detections by decreasing confidence
dects = sorted(dects, key=lambda conf: conf[2], reverse=True)
TP = np.zeros(len(dects))
FP = np.zeros(len(dects))
# create dictionary with amount of gts for each image
det = Counter([cc[0] for cc in gts])
for key, val in det.items():
det[key] = np.zeros(val)
# print("Evaluating class: %s (%d detections)" % (str(c), len(dects)))
# Loop through detections
for d in range(len(dects)):
# print('dect %s => %s' % (dects[d][0], dects[d][3],))
# Find ground truth image
gt = [gt for gt in gts if gt[0] == dects[d][0]]
iouMax = sys.float_info.min
for j in range(len(gt)):
# print('Ground truth gt => %s' % (gt[j][3],))
iou = Evaluator.iou(dects[d][3], gt[j][3])
if iou > iouMax:
iouMax = iou
jmax = j
# Assign detection as true positive/don't care/false positive
if iouMax >= IOUThreshold:
if det[dects[d][0]][jmax] == 0:
TP[d] = 1 # count as true positive
det[dects[d][0]][jmax] = 1 # flag as already 'seen'
# print("TP")
else:
FP[d] = 1 # count as false positive
# print("FP")
# - A detected "cat" is overlaped with a GT "cat" with IOU >= IOUThreshold.
else:
FP[d] = 1 # count as false positive
# print("FP")
# compute precision, recall and average precision
acc_FP = np.cumsum(FP)
acc_TP = np.cumsum(TP)
rec = acc_TP / npos
prec = np.divide(acc_TP, (acc_FP + acc_TP))
# Depending on the method, call the right implementation
if method == MethodAveragePrecision.EveryPointInterpolation:
[ap, mpre, mrec, ii] = Evaluator.CalculateAveragePrecision(rec, prec)
else:
[ap, mpre, mrec, _] = Evaluator.ElevenPointInterpolatedAP(rec, prec)
# add class result in the dictionary to be returned
r = {
'class': c,
'precision': prec,
'recall': rec,
'AP': ap,
'interpolated precision': mpre,
'interpolated recall': mrec,
'total positives': npos,
'total TP': np.sum(TP),
'total FP': np.sum(FP)
}
ret.append(r)
return ret
def PlotPrecisionRecallCurve(self,
boundingBoxes,
IOUThreshold=0.5,
method=None,
showAP=False,
showInterpolatedPrecision=False,
savePath=None,
showGraphic=True):
"""PlotPrecisionRecallCurve
Plot the Precision x Recall curve for a given class.
Args:
boundingBoxes: Object of the class BoundingBoxes representing ground truth and detected
bounding boxes;
IOUThreshold (optional): IOU threshold indicating which detections will be considered
TP or FP (default value = 0.5);
method (default = EveryPointInterpolation): It can be calculated as the implementation
in the official PASCAL VOC toolkit (EveryPointInterpolation), or applying the 11-point
interpolatio as described in the paper "The PASCAL Visual Object Classes(VOC) Challenge"
or EveryPointInterpolation" (ElevenPointInterpolation).
showAP (optional): if True, the average precision value will be shown in the title of
the graph (default = False);
showInterpolatedPrecision (optional): if True, it will show in the plot the interpolated
precision (default = False);
savePath (optional): if informed, the plot will be saved as an image in this path
(ex: /home/mywork/ap.png) (default = None);
showGraphic (optional): if True, the plot will be shown (default = True)
Returns:
A list of dictionaries. Each dictionary contains information and metrics of each class.
The keys of each dictionary are:
dict['class']: class representing the current dictionary;
dict['precision']: array with the precision values;
dict['recall']: array with the recall values;
dict['AP']: average precision;
dict['interpolated precision']: interpolated precision values;
dict['interpolated recall']: interpolated recall values;
dict['total positives']: total number of ground truth positives;
dict['total TP']: total number of True Positive detections;
dict['total FP']: total number of False Negative detections;
"""
results = self.GetPascalVOCMetrics(boundingBoxes, IOUThreshold, method=MethodAveragePrecision.EveryPointInterpolation)
result = None
# Each resut represents a class
for result in results:
if result is None:
raise IOError('Error: Class %d could not be found.' % classId)
classId = result['class']
precision = result['precision']
recall = result['recall']
average_precision = result['AP']
mpre = result['interpolated precision']
mrec = result['interpolated recall']
npos = result['total positives']
total_tp = result['total TP']
total_fp = result['total FP']
plt.close()
if showInterpolatedPrecision:
if method == MethodAveragePrecision.EveryPointInterpolation:
plt.plot(mrec, mpre, '--r', label='Interpolated precision (every point)')
elif method == MethodAveragePrecision.ElevenPointInterpolation:
# Uncomment the line below if you want to plot the area
# plt.plot(mrec, mpre, 'or', label='11-point interpolated precision')
# Remove duplicates, getting only the highest precision of each recall value
nrec = []
nprec = []
for idx in range(len(mrec)):
r = mrec[idx]
if r not in nrec:
idxEq = np.argwhere(mrec == r)
nrec.append(r)
nprec.append(max([mpre[int(id)] for id in idxEq]))
plt.plot(nrec, nprec, 'or', label='11-point interpolated precision')
plt.plot(recall, precision, label='Precision')
plt.xlabel('recall')
plt.ylabel('precision')
if showAP:
ap_str = "{0:.2f}%".format(average_precision * 100)
# ap_str = "{0:.4f}%".format(average_precision * 100)
plt.title('Precision x Recall curve \nClass: %s, AP: %s' % (str(classId), ap_str))
else:
plt.title('Precision x Recall curve \nClass: %s' % str(classId))
plt.legend(shadow=True)
plt.grid()
if savePath is not None:
os.makedirs(savePath, exist_ok=True)
savePath_ = os.path.join(savePath, self.dataset)
os.makedirs(savePath_, exist_ok=True)
# save fig
plt.savefig(os.path.join(savePath_, classId + '.png'))
if showGraphic is True:
plt.show()
# plt.waitforbuttonpress()
plt.pause(0.05)
return results
@staticmethod
def CalculateAveragePrecision(rec, prec):
mrec = []
mrec.append(0)
[mrec.append(e) for e in rec]
mrec.append(1)
mpre = []
mpre.append(0)
[mpre.append(e) for e in prec]
mpre.append(0)
for i in range(len(mpre) - 1, 0, -1):
mpre[i - 1] = max(mpre[i - 1], mpre[i])
ii = []
for i in range(len(mrec) - 1):
if mrec[1:][i] != mrec[0:-1][i]:
ii.append(i + 1)
ap = 0
for i in ii:
ap = ap + np.sum((mrec[i] - mrec[i - 1]) * mpre[i])
# return [ap, mpre[1:len(mpre)-1], mrec[1:len(mpre)-1], ii]
return [ap, mpre[0:len(mpre) - 1], mrec[0:len(mpre) - 1], ii]
@staticmethod
def ElevenPointInterpolatedAP(rec, prec):
""" 11-point interpolated average precision """
# def CalculateAveragePrecision2(rec, prec):
mrec = []
# mrec.append(0)
[mrec.append(e) for e in rec]
# mrec.append(1)
mpre = []
# mpre.append(0)
[mpre.append(e) for e in prec]
# mpre.append(0)
recallValues = np.linspace(0, 1, 11)
recallValues = list(recallValues[::-1])
rhoInterp = []
recallValid = []
# For each recallValues (0, 0.1, 0.2, ... , 1)
for r in recallValues:
# Obtain all recall values higher or equal than r
argGreaterRecalls = np.argwhere(mrec[:] >= r)
pmax = 0
# If there are recalls above r
if argGreaterRecalls.size != 0:
pmax = max(mpre[argGreaterRecalls.min():])
recallValid.append(r)
rhoInterp.append(pmax)
# By definition AP = sum(max(precision whose recall is above r))/11
ap = sum(rhoInterp) / 11
# Generating values for the plot
rvals = []
rvals.append(recallValid[0])
[rvals.append(e) for e in recallValid]
rvals.append(0)
pvals = []
pvals.append(0)
[pvals.append(e) for e in rhoInterp]
pvals.append(0)
# rhoInterp = rhoInterp[::-1]
cc = []
for i in range(len(rvals)):
p = (rvals[i], pvals[i - 1])
if p not in cc:
cc.append(p)
p = (rvals[i], pvals[i])
if p not in cc:
cc.append(p)
recallValues = [i[0] for i in cc]
rhoInterp = [i[1] for i in cc]
return [ap, rhoInterp, recallValues, None]
@staticmethod
def _getAllIOUs(reference, detections):
""" For each detections, calculate IOU with reference """
ret = []
bbReference = reference.getAbsoluteBoundingBox(BBFormat.XYX2Y2)
# img = np.zeros((200,200,3), np.uint8)
for d in detections:
bb = d.getAbsoluteBoundingBox(BBFormat.XYX2Y2)
iou = Evaluator.iou(bbReference, bb)
# Show blank image with the bounding boxes
# img = add_bb_into_image(img, d, color=(255,0,0), thickness=2, label=None)
# img = add_bb_into_image(img, reference, color=(0,255,0), thickness=2, label=None)
ret.append((iou, reference, d)) # iou, reference, detection
# cv2.imshow("comparing",img)
# cv2.waitKey(0)
# cv2.destroyWindow("comparing")
return sorted(ret, key=lambda i: i[0], reverse=True) # sort by iou (from highest to lowest)
@staticmethod
def iou(boxA, boxB):
# if boxes dont intersect
if Evaluator._boxesIntersect(boxA, boxB) is False:
return 0
interArea = Evaluator._getIntersectionArea(boxA, boxB)
union = Evaluator._getUnionAreas(boxA, boxB, interArea=interArea)
# intersection over union
iou = interArea / union
assert iou >= 0
return iou
@staticmethod
def _boxesIntersect(boxA, boxB):
"""
boxA = (Ax1,Ay1,Ax2,Ay2)
boxB = (Bx1,By1,Bx2,By2)
"""
if boxA[0] > boxB[2]:
return False # boxA is right of boxB
if boxB[0] > boxA[2]:
return False # boxA is left of boxB
if boxA[3] < boxB[1]:
return False # boxA is above boxB
if boxA[1] > boxB[3]:
return False # boxA is below boxB
return True
@staticmethod
def _getIntersectionArea(boxA, boxB):
xA = max(boxA[0], boxB[0])
yA = max(boxA[1], boxB[1])
xB = min(boxA[2], boxB[2])
yB = min(boxA[3], boxB[3])
# intersection area
return (xB - xA + 1) * (yB - yA + 1)
@staticmethod
def _getUnionAreas(boxA, boxB, interArea=None):
area_A = Evaluator._getArea(boxA)
area_B = Evaluator._getArea(boxB)
if interArea is None:
interArea = Evaluator._getIntersectionArea(boxA, boxB)
return float(area_A + area_B - interArea)
@staticmethod
def _getArea(box):
return (box[2] - box[0] + 1) * (box[3] - box[1] + 1)
# Validate formats
def ValidateFormats(argFormat, argName, errors):
if argFormat == 'xywh':
return BBFormat.XYWH
elif argFormat == 'xyrb':
return BBFormat.XYX2Y2
elif argFormat is None:
return BBFormat.XYWH # default when nothing is passed
else:
errors.append(
'argument %s: invalid value. It must be either \'xywh\' or \'xyrb\'' % argName)
# Validate mandatory args
def ValidateMandatoryArgs(arg, argName, errors):
if arg is None:
errors.append('argument %s: required argument' % argName)
else:
return True
def ValidateImageSize(arg, argName, argInformed, errors):
errorMsg = 'argument %s: required argument if %s is relative' % (argName, argInformed)
ret = None
if arg is None:
errors.append(errorMsg)
else:
arg = arg.replace('(', '').replace(')', '')
args = arg.split(',')
if len(args) != 2:
errors.append(
'%s. It must be in the format \'width,height\' (e.g. \'600,400\')' % errorMsg)
else:
if not args[0].isdigit() or not args[1].isdigit():
errors.append(
'%s. It must be in INdiaTEGER the format \'width,height\' (e.g. \'600,400\')' %
errorMsg)
else:
ret = (int(args[0]), int(args[1]))
return ret
# Validate coordinate types
def ValidateCoordinatesTypes(arg, argName, errors):
if arg == 'abs':
return CoordinatesType.Absolute
elif arg == 'rel':
return CoordinatesType.Relative
elif arg is None:
return CoordinatesType.Absolute # default when nothing is passed
errors.append('argument %s: invalid value. It must be either \'rel\' or \'abs\'' % argName)
def getBoundingBoxes(directory,
isGT,
bbFormat,
coordType,
allBoundingBoxes=None,
allClasses=None,
imgSize=(0, 0)):
"""Read txt files containing bounding boxes (ground truth and detections)."""
print(directory)
if allBoundingBoxes is None:
allBoundingBoxes = BoundingBoxes()
if allClasses is None:
allClasses = []
# Read ground truths
os.chdir(directory)
files = glob.glob("*.txt")
files.sort()
# print(files)
# Read GT detections from txt file
# Each line of the files in the groundtruths folder represents a ground truth bounding box
# (bounding boxes that a detector should detect)
# Each value of each line is "class_id, x, y, width, height" respectively
# Class_id represents the class of the bounding box
# x, y represents the most top-left coordinates of the bounding box
# x2, y2 represents the most bottom-right coordinates of the bounding box
for f in files:
nameOfImage = f.replace(".txt", "")
fh1 = open(f, "r")
for line in fh1:
line = line.replace("\n", "")
if line.replace(' ', '') == '':
continue
splitLine = line.split(" ")
if isGT:
# idClass = int(splitLine[0]) #class
idClass = (splitLine[0]) # class
x = float(splitLine[1])
y = float(splitLine[2])
w = float(splitLine[3])
h = float(splitLine[4])
bb = BoundingBox(
nameOfImage,
idClass,
x,
y,
w,
h,
coordType,
imgSize,
BBType.GroundTruth,
format=bbFormat)
else:
# idClass = int(splitLine[0]) #class
idClass = (splitLine[0]) # class
confidence = float(splitLine[1])
x = float(splitLine[2])
y = float(splitLine[3])
w = float(splitLine[4])
h = float(splitLine[5])
bb = BoundingBox(
nameOfImage,
idClass,
x,
y,
w,
h,
coordType,
imgSize,
BBType.Detected,
confidence,
format=bbFormat)
allBoundingBoxes.addBoundingBox(bb)
if idClass not in allClasses:
allClasses.append(idClass)
fh1.close()
return allBoundingBoxes, allClasses
def evaluate_frameAP(gtFolder, detFolder, threshold = 0.5, savePath = None, datatset = 'ucf24', show_pr_curve=False):
# Get current path to set default folders
#VERSION = '0.1 (beta)'
gtFormat = 'xyrb'
detFormat = 'xyrb'
gtCoordinates = 'abs'
detCoordinates = 'abs'
gtFolder = os.path.join(os.path.abspath('.'), gtFolder)
detFolder = os.path.join(os.path.abspath('.'), detFolder)
savePath = os.path.join(os.path.abspath('.'), savePath)
iouThreshold = threshold
# Arguments validation
errors = []
# Validate formats
gtFormat = ValidateFormats(gtFormat, 'gtFormat', errors)
detFormat = ValidateFormats(detFormat, '-detformat', errors)
# Coordinates types
gtCoordType = ValidateCoordinatesTypes(gtCoordinates, '-gtCoordinates', errors)
detCoordType = ValidateCoordinatesTypes(detCoordinates, '-detCoordinates', errors)
imgSize = (0, 0)
# # Create directory to save results
# shutil.rmtree(savePath, ignore_errors=True) # Clear folder
# exit()
# if savePath is not None:
# os.makedirs(savePath)
# Show plot during execution
# showPlot = args.showPlot
# print('iouThreshold= %f' % iouThreshold)
# #print('savePath = %s' % savePath)
# print('gtFormat = %s' % gtFormat)
# print('detFormat = %s' % detFormat)
# print('gtFolder = %s' % gtFolder)
# print('detFolder = %s' % detFolder)
# print('gtCoordType = %s' % gtCoordType)
# print('detCoordType = %s' % detCoordType)
#print('showPlot %s' % showPlot)
# Get groundtruth boxes
allBoundingBoxes, allClasses = getBoundingBoxes(
gtFolder, True, gtFormat, gtCoordType, imgSize=imgSize)
# Get detected boxes
allBoundingBoxes, allClasses = getBoundingBoxes(
detFolder, False, detFormat, detCoordType, allBoundingBoxes, allClasses, imgSize=imgSize)
allClasses.sort()
evaluator = Evaluator(dataset=datatset)
acc_AP = 0
validClasses = 0
# Plot Precision x Recall curve
detections = evaluator.PlotPrecisionRecallCurve(
allBoundingBoxes, # Object containing all bounding boxes (ground truths and detections)
IOUThreshold=iouThreshold, # IOU threshold
method=MethodAveragePrecision.EveryPointInterpolation,
showAP=True, # Show Average Precision in the title of the plot
showInterpolatedPrecision=show_pr_curve, # plot the interpolated precision curve
savePath=savePath,
showGraphic=False)
# f = open(os.path.join(savePath, 'results.txt'), 'w')
# f.write('Object Detection Metrics\n')
# f.write('https://github.com/rafaelpadilla/Object-Detection-Metrics\n\n\n')
# f.write('Average Precision (AP), Precision and Recall per class:')
# each detection is a class and store AP and mAP results in AP_res list
AP_res = []
for metricsPerClass in detections:
# Get metric values per each class
cl = metricsPerClass['class']
ap = metricsPerClass['AP']
precision = metricsPerClass['precision']
recall = metricsPerClass['recall']
totalPositives = metricsPerClass['total positives']
total_TP = metricsPerClass['total TP']
total_FP = metricsPerClass['total FP']
if totalPositives > 0:
validClasses = validClasses + 1
acc_AP = acc_AP + ap
prec = ['%.2f' % p for p in precision]
rec = ['%.2f' % r for r in recall]
ap_str = "{0:.2f}%".format(ap * 100)
# ap_str = "{0:.4f}%".format(ap * 100)
#print('AP: %s (%s)' % (ap_str, cl))
# f.write('\n\nClass: %s' % cl)
# f.write('\nAP: %s' % ap_str)
# f.write('\nPrecision: %s' % prec)
# f.write('\nRecall: %s' % rec)
AP_res.append('AP: %s (%s)' % (ap_str, cl))
mAP = acc_AP / validClasses
mAP_str = "{0:.2f}%".format(mAP * 100)
#print('mAP: %s' % mAP_str)
AP_res.append('mAP: %s' % mAP_str)
# f.write('\n\n\nmAP: %s' % mAP_str)
return AP_res
if __name__ == '__main__':
evaluate_frameAP('groundtruths_ucf', 'detection_test')
|