Thesis / models /yowo /matcher.py
Ryan-Pham's picture
Upload 103 files
beb7843 verified
import torch
import torch.nn.functional as F
from utils.box_ops import *
# SimOTA
class SimOTA(object):
def __init__(self, num_classes, center_sampling_radius, topk_candidate):
self.num_classes = num_classes
self.center_sampling_radius = center_sampling_radius
self.topk_candidate = topk_candidate
@torch.no_grad()
def __call__(self,
fpn_strides,
anchors,
pred_conf,
pred_cls,
pred_box,
tgt_labels,
tgt_bboxes):
# [M,]
strides = torch.cat([torch.ones_like(anchor_i[:, 0]) * stride_i
for stride_i, anchor_i in zip(fpn_strides, anchors)], dim=-1)
# List[F, M, 2] -> [M, 2]
anchors = torch.cat(anchors, dim=0)
num_anchor = anchors.shape[0]
num_gt = len(tgt_labels)
# positive candidates
fg_mask, is_in_boxes_and_center = \
self.get_in_boxes_info(
tgt_bboxes,
anchors,
strides,
num_anchor,
num_gt
)
conf_preds_ = pred_conf[fg_mask] # [Mp, 1]
cls_preds_ = pred_cls[fg_mask] # [Mp, C]
box_preds_ = pred_box[fg_mask] # [Mp, 4]
num_in_boxes_anchor = box_preds_.shape[0]
# [N, Mp]
pair_wise_ious, _ = box_iou(tgt_bboxes, box_preds_)
pair_wise_ious_loss = -torch.log(pair_wise_ious + 1e-8)
if len(tgt_labels.shape) == 1:
gt_cls = F.one_hot(tgt_labels.long(), self.num_classes)
elif len(tgt_labels.shape) == 2:
gt_cls = tgt_labels
# [N, C] -> [N, Mp, C]
gt_cls = gt_cls.float().unsqueeze(1).repeat(1, num_in_boxes_anchor, 1)
with torch.cuda.amp.autocast(enabled=False):
score_preds_ = torch.sqrt(
cls_preds_.float().unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
* conf_preds_.float().unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
) # [N, Mp, C]
pair_wise_cls_loss = F.binary_cross_entropy(
score_preds_, gt_cls, reduction="none"
).sum(-1) # [N, Mp]
del score_preds_
cost = (
pair_wise_cls_loss
+ 3.0 * pair_wise_ious_loss
+ 100000.0 * (~is_in_boxes_and_center)
) # [N, Mp]
(
num_fg,
gt_matched_classes, # [num_fg,]
pred_ious_this_matching, # [num_fg,]
matched_gt_inds, # [num_fg,]
) = self.dynamic_k_matching(
cost,
pair_wise_ious,
tgt_labels,
num_gt,
fg_mask
)
del pair_wise_cls_loss, cost, pair_wise_ious, pair_wise_ious_loss
return (
gt_matched_classes,
fg_mask,
pred_ious_this_matching,
matched_gt_inds,
num_fg,
)
def get_in_boxes_info(
self,
gt_bboxes, # [N, 4]
anchors, # [M, 2]
strides, # [M,]
num_anchors, # M
num_gt, # N
):
# anchor center
x_centers = anchors[:, 0]
y_centers = anchors[:, 1]
# [M,] -> [1, M] -> [N, M]
x_centers = x_centers.unsqueeze(0).repeat(num_gt, 1)
y_centers = y_centers.unsqueeze(0).repeat(num_gt, 1)
# [N,] -> [N, 1] -> [N, M]
gt_bboxes_l = gt_bboxes[:, 0].unsqueeze(1).repeat(1, num_anchors) # x1
gt_bboxes_t = gt_bboxes[:, 1].unsqueeze(1).repeat(1, num_anchors) # y1
gt_bboxes_r = gt_bboxes[:, 2].unsqueeze(1).repeat(1, num_anchors) # x2
gt_bboxes_b = gt_bboxes[:, 3].unsqueeze(1).repeat(1, num_anchors) # y2
b_l = x_centers - gt_bboxes_l
b_r = gt_bboxes_r - x_centers
b_t = y_centers - gt_bboxes_t
b_b = gt_bboxes_b - y_centers
bbox_deltas = torch.stack([b_l, b_t, b_r, b_b], 2)
is_in_boxes = bbox_deltas.min(dim=-1).values > 0.0
is_in_boxes_all = is_in_boxes.sum(dim=0) > 0
# in fixed center
center_radius = self.center_sampling_radius
# [N, 2]
gt_centers = (gt_bboxes[:, :2] + gt_bboxes[:, 2:]) * 0.5
# [1, M]
center_radius_ = center_radius * strides.unsqueeze(0)
gt_bboxes_l = gt_centers[:, 0].unsqueeze(1).repeat(1, num_anchors) - center_radius_ # x1
gt_bboxes_t = gt_centers[:, 1].unsqueeze(1).repeat(1, num_anchors) - center_radius_ # y1
gt_bboxes_r = gt_centers[:, 0].unsqueeze(1).repeat(1, num_anchors) + center_radius_ # x2
gt_bboxes_b = gt_centers[:, 1].unsqueeze(1).repeat(1, num_anchors) + center_radius_ # y2
c_l = x_centers - gt_bboxes_l
c_r = gt_bboxes_r - x_centers
c_t = y_centers - gt_bboxes_t
c_b = gt_bboxes_b - y_centers
center_deltas = torch.stack([c_l, c_t, c_r, c_b], 2)
is_in_centers = center_deltas.min(dim=-1).values > 0.0
is_in_centers_all = is_in_centers.sum(dim=0) > 0
# in boxes and in centers
is_in_boxes_anchor = is_in_boxes_all | is_in_centers_all
is_in_boxes_and_center = (
is_in_boxes[:, is_in_boxes_anchor] & is_in_centers[:, is_in_boxes_anchor]
)
return is_in_boxes_anchor, is_in_boxes_and_center
def dynamic_k_matching(
self,
cost,
pair_wise_ious,
gt_classes,
num_gt,
fg_mask
):
# Dynamic K
# ---------------------------------------------------------------
matching_matrix = torch.zeros_like(cost, dtype=torch.uint8)
ious_in_boxes_matrix = pair_wise_ious
n_candidate_k = min(self.topk_candidate, ious_in_boxes_matrix.size(1))
topk_ious, _ = torch.topk(ious_in_boxes_matrix, n_candidate_k, dim=1)
dynamic_ks = torch.clamp(topk_ious.sum(1).int(), min=1)
dynamic_ks = dynamic_ks.tolist()
for gt_idx in range(num_gt):
_, pos_idx = torch.topk(
cost[gt_idx], k=dynamic_ks[gt_idx], largest=False
)
matching_matrix[gt_idx][pos_idx] = 1
del topk_ious, dynamic_ks, pos_idx
anchor_matching_gt = matching_matrix.sum(0)
if (anchor_matching_gt > 1).sum() > 0:
_, cost_argmin = torch.min(cost[:, anchor_matching_gt > 1], dim=0)
matching_matrix[:, anchor_matching_gt > 1] *= 0
matching_matrix[cost_argmin, anchor_matching_gt > 1] = 1
fg_mask_inboxes = matching_matrix.sum(0) > 0
num_fg = fg_mask_inboxes.sum().item()
fg_mask[fg_mask.clone()] = fg_mask_inboxes
matched_gt_inds = matching_matrix[:, fg_mask_inboxes].argmax(0)
gt_matched_classes = gt_classes[matched_gt_inds]
pred_ious_this_matching = (matching_matrix * pair_wise_ious).sum(0)[
fg_mask_inboxes
]
return num_fg, gt_matched_classes, pred_ious_this_matching, matched_gt_inds