File size: 2,947 Bytes
4a5290b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
license: gemma
base_model: google/gemma-2-2b
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: collapse_gemma-2-2b_hs2_accumulatesubsample_iter20_sftsd1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# collapse_gemma-2-2b_hs2_accumulatesubsample_iter20_sftsd1

This model is a fine-tuned version of [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2128
- Num Input Tokens Seen: 4956000

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 8e-06
- train_batch_size: 8
- eval_batch_size: 16
- seed: 1
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Input Tokens Seen |
|:-------------:|:------:|:----:|:---------------:|:-----------------:|
| No log        | 0      | 0    | 1.3909          | 0                 |
| 1.3061        | 0.0526 | 5    | 1.2755          | 257768            |
| 1.1139        | 0.1053 | 10   | 1.2161          | 516928            |
| 0.8992        | 0.1579 | 15   | 1.2251          | 774912            |
| 0.7783        | 0.2105 | 20   | 1.2543          | 1046504           |
| 0.6654        | 0.2632 | 25   | 1.2786          | 1304672           |
| 0.6199        | 0.3158 | 30   | 1.2854          | 1564472           |
| 0.5221        | 0.3684 | 35   | 1.2730          | 1825704           |
| 0.4487        | 0.4211 | 40   | 1.2795          | 2083416           |
| 0.467         | 0.4737 | 45   | 1.2633          | 2341304           |
| 0.4486        | 0.5263 | 50   | 1.2577          | 2609808           |
| 0.4169        | 0.5789 | 55   | 1.2187          | 2865536           |
| 0.3921        | 0.6316 | 60   | 1.2464          | 3125408           |
| 0.3376        | 0.6842 | 65   | 1.2217          | 3387088           |
| 0.3697        | 0.7368 | 70   | 1.2219          | 3650704           |
| 0.3067        | 0.7895 | 75   | 1.2148          | 3918312           |
| 0.3436        | 0.8421 | 80   | 1.2127          | 4176968           |
| 0.3345        | 0.8947 | 85   | 1.2084          | 4435856           |
| 0.3397        | 0.9474 | 90   | 1.2054          | 4698528           |
| 0.2657        | 1.0    | 95   | 1.2128          | 4956000           |


### Framework versions

- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1