--- license: gemma base_model: google/gemma-2-2b tags: - trl - sft - generated_from_trainer model-index: - name: collapse_gemma-2-2b_hs2_replace_iter14_sftsd2 results: [] --- # collapse_gemma-2-2b_hs2_replace_iter14_sftsd2 This model is a fine-tuned version of [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.5786 - Num Input Tokens Seen: 4691896 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 8 - eval_batch_size: 16 - seed: 2 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:------:|:----:|:---------------:|:-----------------:| | No log | 0 | 0 | 1.3909 | 0 | | 1.5832 | 0.0511 | 5 | 1.2796 | 241616 | | 0.8587 | 0.1021 | 10 | 1.3016 | 479616 | | 0.4185 | 0.1532 | 15 | 1.5403 | 721488 | | 0.2308 | 0.2042 | 20 | 1.7468 | 964136 | | 0.1045 | 0.2553 | 25 | 2.0213 | 1208880 | | 0.0619 | 0.3063 | 30 | 2.2027 | 1454104 | | 0.0318 | 0.3574 | 35 | 2.3840 | 1702688 | | 0.0249 | 0.4084 | 40 | 2.4977 | 1942392 | | 0.0229 | 0.4595 | 45 | 2.5368 | 2183280 | | 0.0206 | 0.5105 | 50 | 2.5589 | 2426192 | | 0.0223 | 0.5616 | 55 | 2.5742 | 2665256 | | 0.0204 | 0.6126 | 60 | 2.5825 | 2909424 | | 0.0209 | 0.6637 | 65 | 2.5771 | 3148624 | | 0.0203 | 0.7147 | 70 | 2.5744 | 3384112 | | 0.02 | 0.7658 | 75 | 2.5874 | 3631480 | | 0.0222 | 0.8168 | 80 | 2.5799 | 3869320 | | 0.0208 | 0.8679 | 85 | 2.5673 | 4113768 | | 0.0216 | 0.9190 | 90 | 2.5709 | 4346680 | | 0.0211 | 0.9700 | 95 | 2.5779 | 4595608 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1