--- license: gemma base_model: google/gemma-2-2b tags: - trl - sft - generated_from_trainer model-index: - name: collapse_gemma-2-2b_hs2_replace_iter17_sftsd1 results: [] --- # collapse_gemma-2-2b_hs2_replace_iter17_sftsd1 This model is a fine-tuned version of [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.5467 - Num Input Tokens Seen: 4476864 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 8 - eval_batch_size: 16 - seed: 1 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:------:|:----:|:---------------:|:-----------------:| | No log | 0 | 0 | 1.3909 | 0 | | 1.5537 | 0.0511 | 5 | 1.2778 | 222904 | | 0.7952 | 0.1022 | 10 | 1.2852 | 448760 | | 0.5611 | 0.1533 | 15 | 1.5050 | 675280 | | 0.2536 | 0.2043 | 20 | 1.6999 | 905104 | | 0.0968 | 0.2554 | 25 | 1.9531 | 1131936 | | 0.1019 | 0.3065 | 30 | 2.1577 | 1361488 | | 0.0495 | 0.3576 | 35 | 2.2738 | 1602552 | | 0.0367 | 0.4087 | 40 | 2.3801 | 1837384 | | 0.0268 | 0.4598 | 45 | 2.4756 | 2067480 | | 0.0231 | 0.5109 | 50 | 2.5173 | 2301720 | | 0.0267 | 0.5619 | 55 | 2.5333 | 2537344 | | 0.0236 | 0.6130 | 60 | 2.5332 | 2774360 | | 0.024 | 0.6641 | 65 | 2.5395 | 3004064 | | 0.0218 | 0.7152 | 70 | 2.5456 | 3227784 | | 0.0214 | 0.7663 | 75 | 2.5475 | 3463792 | | 0.0219 | 0.8174 | 80 | 2.5494 | 3696792 | | 0.0242 | 0.8685 | 85 | 2.5434 | 3925432 | | 0.024 | 0.9195 | 90 | 2.5408 | 4158728 | | 0.0228 | 0.9706 | 95 | 2.5444 | 4384712 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1