--- library_name: transformers license: mit base_model: openai/whisper-large-v3-turbo tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-medium-CAENNAIS results: [] --- # whisper-medium-CAENNAIS This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5740 - Wer: 26.7396 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | No log | 1.0 | 56 | 0.7664 | 33.4990 | | No log | 2.0 | 112 | 0.4936 | 28.0649 | | No log | 3.0 | 168 | 0.4702 | 23.7906 | | No log | 4.0 | 224 | 0.4987 | 28.4957 | | No log | 5.0 | 280 | 0.4999 | 23.7575 | | No log | 6.0 | 336 | 0.5567 | 25.3810 | | No log | 7.0 | 392 | 0.5685 | 23.4924 | | No log | 8.0 | 448 | 0.5738 | 25.0497 | | 0.3662 | 9.0 | 504 | 0.6081 | 24.6852 | | 0.3662 | 10.0 | 560 | 0.5740 | 26.7396 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.4.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.0