wei commited on
Commit
d58e980
1 Parent(s): b0eb833

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +28 -23
README.md CHANGED
@@ -2,18 +2,19 @@
2
  tags:
3
  - summarization
4
  widget:
5
- - text: "public static < T , U > Function < T , U > castFunction ( Class < U > target ) { return new CastToClass < T , U > ( target ) ; }"
6
 
7
  ---
8
 
9
- # CodeTrans model for code documentation generation java
 
10
  Pretrained model on programming language java using the t5 small model architecture. It was first released in
11
  [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized java code functions: it works best with tokenized java functions.
12
 
13
 
14
  ## Model description
15
 
16
- This CodeTrans model is based on the `t5-small` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. It is then fine-tuned on the code documentation generation task for the java function/method.
17
 
18
  ## Intended uses & limitations
19
 
@@ -27,30 +28,31 @@ Here is how to use this model to generate java function documentation using Tran
27
  from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline
28
 
29
  pipeline = SummarizationPipeline(
30
- model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_small_code_documentation_generation_java_multitask_finetune"),
31
- tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_small_code_documentation_generation_java_multitask_finetune", skip_special_tokens=True),
32
  device=0
33
  )
34
 
35
- tokenized_code = "public static < T , U > Function < T , U > castFunction ( Class < U > target ) { return new CastToClass < T , U > ( target ) ; }"
36
  pipeline([tokenized_code])
37
  ```
38
- Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/fine-tuning/function%20documentation%20generation/java/small_model.ipynb).
39
  ## Training data
40
 
41
  The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1)
42
 
 
43
  ## Training procedure
44
 
45
  ### Multi-task Pretraining
46
 
47
- The model was trained on a single TPU Pod V3-8 for half million steps in total, using sequence length 512 (batch size 4096).
48
  It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture.
49
  The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training.
50
 
51
  ### Fine-tuning
52
 
53
- This model was then fine-tuned on a single TPU Pod V2-8 for 4000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing java code.
54
 
55
 
56
  ## Evaluation results
@@ -59,20 +61,23 @@ For the code documentation tasks, different models achieves the following result
59
 
60
  Test results :
61
 
62
- | Language / Model | Python | Java | Go | Php | Ruby | JavaScript |
63
- | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: |
64
- | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 |
65
- | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 |
66
- | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 |
67
- | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 |
68
- | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** |
69
- | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 |
70
- | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 |
71
- | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 |
72
- | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 |
73
- | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 |
74
- | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 |
75
- | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 |
 
76
 
77
 
78
  > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
 
 
 
2
  tags:
3
  - summarization
4
  widget:
5
+ - text: "protected String renderUri ( URI uri ) { return uri . toASCIIString ( ) ; }"
6
 
7
  ---
8
 
9
+
10
+ # CodeTrans model for code comment generation java
11
  Pretrained model on programming language java using the t5 small model architecture. It was first released in
12
  [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized java code functions: it works best with tokenized java functions.
13
 
14
 
15
  ## Model description
16
 
17
+ This CodeTrans model is based on the `t5-small` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. It is then fine-tuned on the code comment generation task for the java function/method.
18
 
19
  ## Intended uses & limitations
20
 
 
28
  from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline
29
 
30
  pipeline = SummarizationPipeline(
31
+ model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_small_code_comment_generation_java_multitask_finetune"),
32
+ tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_small_code_comment_generation_java_multitask_finetune", skip_special_tokens=True),
33
  device=0
34
  )
35
 
36
+ tokenized_code = "protected String renderUri ( URI uri ) { return uri . toASCIIString ( ) ; }"
37
  pipeline([tokenized_code])
38
  ```
39
+ Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/fine-tuning/code%20comment%20generation/small_model.ipynb).
40
  ## Training data
41
 
42
  The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1)
43
 
44
+
45
  ## Training procedure
46
 
47
  ### Multi-task Pretraining
48
 
49
+ The model was trained on a single TPU Pod V3-8 for 260,000 steps in total, using sequence length 512 (batch size 4096).
50
  It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture.
51
  The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training.
52
 
53
  ### Fine-tuning
54
 
55
+ This model was then fine-tuned on a single TPU Pod V2-8 for 750,000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing java code.
56
 
57
 
58
  ## Evaluation results
 
61
 
62
  Test results :
63
 
64
+ | Language / Model | Java |
65
+ | -------------------- | :------------: |
66
+ | CodeTrans-ST-Small | 37.98 |
67
+ | CodeTrans-ST-Base | 38.07 |
68
+ | CodeTrans-TF-Small | 38.56 |
69
+ | CodeTrans-TF-Base | 39.06 |
70
+ | CodeTrans-TF-Large | **39.50** |
71
+ | CodeTrans-MT-Small | 20.15 |
72
+ | CodeTrans-MT-Base | 27.44 |
73
+ | CodeTrans-MT-Large | 34.69 |
74
+ | CodeTrans-MT-TF-Small | 38.37 |
75
+ | CodeTrans-MT-TF-Base | 38.90 |
76
+ | CodeTrans-MT-TF-Large | 39.25 |
77
+ | State of the art | 38.17 |
78
+
79
 
80
 
81
  > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
82
+
83
+