--- license: cc-by-nc-4.0 tags: - DPO --- # SJ-Donald/SJ-SOLAR-10.7b-DPO SJ-Donald/SJ-SOLAR-10.7b-DPO is fine-tuned using DPO method. ## Environment Using **Google CoLab A100** ## Base model * [SJ-Donald/SOLAR-10.7B-slerp](https://huggingface.co/SJ-Donald/SOLAR-10.7B-slerp) ## Datasets * [SJ-Donald/orca-dpo-pairs-ko](https://huggingface.co/datasets/SJ-Donald/orca-dpo-pairs-ko) ## Benchmark ### Open-LLM-Leaderboard(https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K | | ------: | -----: | -----------: | ------: | -----------: | ---------: | ------: | | 72.67 | 68.26 | 86.95 | 66.73 | 67.74 | 84.21 | 62.03 | ### open-ko-llm-leaderboard(https://huggingface.co/spaces/upstage/open-ko-llm-leaderboard) | Average | Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 | | ------: | -----: | -----------: | ------: | ------------: | --------------: | | 56.93 | 53.67 | 61.99 | 53.36 | 57.2 | 58.44 | ## How to use ```Python import torch from transformers import AutoModelForCausalLM, AutoTokenizer repo = 'SJ-Donald/SJ-SOLAR-10.7b-DPO' tokenizer = AutoTokenizer.from_pretrained(repo) model = AutoModelForCausalLM.from_pretrained( repo, return_dict=True, torch_dtype=torch.float16, device_map='auto' ) ``` ## Chat Template ```Python template = """### System: {{system_content}} ### User: {{question}} ### Assistant: """ ``` ## GGUF Version You can use gguf model file here! -> [SJ-Donald/SJ-SOLAR-10.7b-DPO-GGUF](https://huggingface.co/SJ-Donald/SJ-SOLAR-10.7b-DPO-GGUF)