--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - image-classification - generated_from_trainer metrics: - accuracy widget: - src: >- https://huggingface.co/SSM10/vit_models/blob/main/healthy_66daaf31-4e54-476e-85e5-42d062377763.jpeg example_title: Healthy - src: >- https://huggingface.co/SSM10/vit_models/blob/main/bean_rust_f1500068-80a0-41b1-b57c-2a601fb95e66.jpeg example_title: Bean Rust model-index: - name: vit_models results: [] datasets: - AI-Lab-Makerere/beans pipeline_tag: image-classification --- # vit_models This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0299 - Accuracy: 0.9774 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.1297 | 3.8462 | 500 | 0.0299 | 0.9774 | ### Framework versions - Transformers 4.43.3 - Pytorch 2.3.1 - Datasets 2.20.0 - Tokenizers 0.19.1