--- datasets: - food101 license: apache-2.0 metrics: - accuracy tags: - generated_from_trainer model-index: - name: vit-base-patch16-224-in21k-finetuned-lora-food101 results: - task: type: image-classification name: Image Classification dataset: name: food101 type: food101 config: default split: train[:5000] args: default metrics: - type: accuracy value: 0.96 name: Accuracy --- # vit-base-patch16-224-in21k-finetuned-lora-food101 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the food101 dataset. It achieves the following results on the evaluation set: - Loss: 0.1448 - Accuracy: 0.96 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.005 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 9 | 0.5069 | 0.896 | | 2.1627 | 2.0 | 18 | 0.1891 | 0.946 | | 0.3451 | 3.0 | 27 | 0.1448 | 0.96 | | 0.2116 | 4.0 | 36 | 0.1509 | 0.958 | | 0.1711 | 5.0 | 45 | 0.1498 | 0.958 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2