--- license: mit base_model: facebook/w2v-bert-2.0 tags: - generated_from_trainer datasets: - common_voice_16_1 metrics: - wer model-index: - name: w2v-bert-2.0-sr results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_16_1 type: common_voice_16_1 config: sr split: test args: sr metrics: - name: Wer type: wer value: 0.06932439583700829 --- # w2v-bert-2.0-sr This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the common_voice_16_1 dataset. It achieves the following results on the evaluation set: - Loss: 0.1200 - Wer: 0.0693 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.202 | 2.89 | 300 | 0.2028 | 0.1009 | | 0.1031 | 5.78 | 600 | 0.1945 | 0.1062 | | 0.0429 | 8.67 | 900 | 0.1200 | 0.0693 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1