File size: 1,448 Bytes
0ee5fff
5d6bf85
 
 
 
 
 
 
0ee5fff
 
5d6bf85
 
0ee5fff
5d6bf85
0ee5fff
5d6bf85
 
 
 
 
 
 
 
 
0ee5fff
5d6bf85
0ee5fff
5d6bf85
0ee5fff
5d6bf85
0ee5fff
5d6bf85
0ee5fff
5d6bf85
0ee5fff
5d6bf85
0ee5fff
5d6bf85
0ee5fff
5d6bf85
0ee5fff
5d6bf85
 
 
 
 
 
 
 
 
 
 
 
0ee5fff
5d6bf85
0ee5fff
5d6bf85
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
license: mit
base_model: facebook/w2v-bert-2.0
tags:
- generated_from_trainer
model-index:
- name: w2v-bert-2.0-tamil-gpu-custom_preprocessed_v1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# w2v-bert-2.0-tamil-gpu-custom_preprocessed_v1

This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on an unknown dataset.
It achieves the following results on the evaluation set:
- eval_loss: inf
- eval_wer: 0.4790
- eval_runtime: 231.2694
- eval_samples_per_second: 18.922
- eval_steps_per_second: 2.365
- epoch: 3.17
- step: 3900

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 4.83567e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP

### Framework versions

- Transformers 4.39.3
- Pytorch 2.1.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2