--- license: mit base_model: facebook/w2v-bert-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: w2v-bert-2.0-tamil-gpu-custom_preprocessed_v2 results: [] --- # w2v-bert-2.0-tamil-gpu-custom_preprocessed_v2 This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: inf - Wer: 0.4310 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.53567e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.2473 | 0.24 | 300 | inf | 0.4771 | | 0.7121 | 0.49 | 600 | inf | 0.3487 | | 0.552 | 0.73 | 900 | inf | 0.3140 | | 0.4973 | 0.97 | 1200 | inf | 0.3202 | | 0.499 | 1.22 | 1500 | inf | 0.2678 | | 0.4667 | 1.46 | 1800 | inf | 0.2784 | | 0.5909 | 1.71 | 2100 | inf | 0.3930 | | 1.411 | 1.95 | 2400 | inf | 0.3839 | | 2.1124 | 2.19 | 2700 | inf | 0.4063 | | 2.2398 | 2.44 | 3000 | inf | 0.4310 | | 2.3058 | 2.68 | 3300 | inf | 0.4310 | | 2.262 | 2.92 | 3600 | inf | 0.4310 | | 2.2588 | 3.17 | 3900 | inf | 0.4310 | | 2.3649 | 3.41 | 4200 | inf | 0.4310 | | 2.2835 | 3.66 | 4500 | inf | 0.4310 | | 2.3228 | 3.9 | 4800 | inf | 0.4310 | | 2.2322 | 4.14 | 5100 | inf | 0.4310 | | 2.3131 | 4.39 | 5400 | inf | 0.4310 | | 2.2916 | 4.63 | 5700 | inf | 0.4310 | | 2.3239 | 4.87 | 6000 | inf | 0.4310 | | 2.3533 | 5.12 | 6300 | inf | 0.4310 | | 2.2787 | 5.36 | 6600 | inf | 0.4310 | | 2.2776 | 5.61 | 6900 | inf | 0.4310 | | 2.3143 | 5.85 | 7200 | inf | 0.4310 | | 2.3105 | 6.09 | 7500 | inf | 0.4310 | | 2.2639 | 6.34 | 7800 | inf | 0.4310 | | 2.3211 | 6.58 | 8100 | inf | 0.4310 | | 2.2755 | 6.82 | 8400 | inf | 0.4310 | | 2.3074 | 7.07 | 8700 | inf | 0.4310 | | 2.2627 | 7.31 | 9000 | inf | 0.4310 | | 2.2756 | 7.55 | 9300 | inf | 0.4310 | | 2.2594 | 7.8 | 9600 | inf | 0.4310 | | 2.2221 | 8.04 | 9900 | inf | 0.4310 | | 2.2932 | 8.29 | 10200 | inf | 0.4310 | | 2.2978 | 8.53 | 10500 | inf | 0.4310 | | 2.2958 | 8.77 | 10800 | inf | 0.4310 | | 2.3239 | 9.02 | 11100 | inf | 0.4310 | | 2.281 | 9.26 | 11400 | inf | 0.4310 | | 2.272 | 9.5 | 11700 | inf | 0.4310 | | 2.2544 | 9.75 | 12000 | inf | 0.4310 | | 2.3103 | 9.99 | 12300 | inf | 0.4310 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2