Upload evosdxl_jp_v1.py
Browse files- evosdxl_jp_v1.py +204 -0
evosdxl_jp_v1.py
ADDED
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import List, Dict, Union
|
3 |
+
from tqdm import tqdm
|
4 |
+
import torch
|
5 |
+
import safetensors
|
6 |
+
from huggingface_hub import hf_hub_download
|
7 |
+
from transformers import AutoTokenizer, CLIPTextModelWithProjection
|
8 |
+
from diffusers import (
|
9 |
+
StableDiffusionXLPipeline,
|
10 |
+
UNet2DConditionModel,
|
11 |
+
EulerDiscreteScheduler,
|
12 |
+
)
|
13 |
+
from diffusers.loaders import LoraLoaderMixin
|
14 |
+
|
15 |
+
SDXL_REPO = "stabilityai/stable-diffusion-xl-base-1.0"
|
16 |
+
JSDXL_REPO = "stabilityai/japanese-stable-diffusion-xl"
|
17 |
+
L_REPO = "ByteDance/SDXL-Lightning"
|
18 |
+
|
19 |
+
|
20 |
+
def load_state_dict(checkpoint_file: Union[str, os.PathLike], device: str = "cpu"):
|
21 |
+
file_extension = os.path.basename(checkpoint_file).split(".")[-1]
|
22 |
+
if file_extension == "safetensors":
|
23 |
+
return safetensors.torch.load_file(checkpoint_file, device=device)
|
24 |
+
else:
|
25 |
+
return torch.load(checkpoint_file, map_location=device)
|
26 |
+
|
27 |
+
|
28 |
+
def load_from_pretrained(
|
29 |
+
repo_id,
|
30 |
+
filename="diffusion_pytorch_model.fp16.safetensors",
|
31 |
+
subfolder="unet",
|
32 |
+
device="cuda",
|
33 |
+
) -> Dict[str, torch.Tensor]:
|
34 |
+
return load_state_dict(
|
35 |
+
hf_hub_download(
|
36 |
+
repo_id=repo_id,
|
37 |
+
filename=filename,
|
38 |
+
subfolder=subfolder,
|
39 |
+
),
|
40 |
+
device=device,
|
41 |
+
)
|
42 |
+
|
43 |
+
|
44 |
+
def reshape_weight_task_tensors(task_tensors, weights):
|
45 |
+
"""
|
46 |
+
Reshapes `weights` to match the shape of `task_tensors` by unsqeezing in the remaining dimenions.
|
47 |
+
|
48 |
+
Args:
|
49 |
+
task_tensors (`torch.Tensor`): The tensors that will be used to reshape `weights`.
|
50 |
+
weights (`torch.Tensor`): The tensor to be reshaped.
|
51 |
+
|
52 |
+
Returns:
|
53 |
+
`torch.Tensor`: The reshaped tensor.
|
54 |
+
"""
|
55 |
+
new_shape = weights.shape + (1,) * (task_tensors.dim() - weights.dim())
|
56 |
+
weights = weights.view(new_shape)
|
57 |
+
return weights
|
58 |
+
|
59 |
+
|
60 |
+
def linear(task_tensors: List[torch.Tensor], weights: torch.Tensor) -> torch.Tensor:
|
61 |
+
"""
|
62 |
+
Merge the task tensors using `linear`.
|
63 |
+
|
64 |
+
Args:
|
65 |
+
task_tensors(`List[torch.Tensor]`):The task tensors to merge.
|
66 |
+
weights (`torch.Tensor`):The weights of the task tensors.
|
67 |
+
|
68 |
+
Returns:
|
69 |
+
`torch.Tensor`: The merged tensor.
|
70 |
+
"""
|
71 |
+
task_tensors = torch.stack(task_tensors, dim=0)
|
72 |
+
# weighted task tensors
|
73 |
+
weights = reshape_weight_task_tensors(task_tensors, weights)
|
74 |
+
weighted_task_tensors = task_tensors * weights
|
75 |
+
mixed_task_tensors = weighted_task_tensors.sum(dim=0)
|
76 |
+
return mixed_task_tensors
|
77 |
+
|
78 |
+
|
79 |
+
def merge_models(
|
80 |
+
task_tensors,
|
81 |
+
weights,
|
82 |
+
):
|
83 |
+
keys = list(task_tensors[0].keys())
|
84 |
+
weights = torch.tensor(weights, device=task_tensors[0][keys[0]].device)
|
85 |
+
state_dict = {}
|
86 |
+
for key in tqdm(keys, desc="Merging"):
|
87 |
+
w_list = []
|
88 |
+
for i, sd in enumerate(task_tensors):
|
89 |
+
w = sd.pop(key)
|
90 |
+
w_list.append(w)
|
91 |
+
new_w = linear(task_tensors=w_list, weights=weights)
|
92 |
+
state_dict[key] = new_w
|
93 |
+
return state_dict
|
94 |
+
|
95 |
+
|
96 |
+
def split_conv_attn(weights):
|
97 |
+
attn_tensors = {}
|
98 |
+
conv_tensors = {}
|
99 |
+
for key in list(weights.keys()):
|
100 |
+
if any(k in key for k in ["to_k", "to_q", "to_v", "to_out.0"]):
|
101 |
+
attn_tensors[key] = weights.pop(key)
|
102 |
+
else:
|
103 |
+
conv_tensors[key] = weights.pop(key)
|
104 |
+
return {"conv": conv_tensors, "attn": attn_tensors}
|
105 |
+
|
106 |
+
|
107 |
+
def load_evosdxl_jp(device="cuda") -> StableDiffusionXLPipeline:
|
108 |
+
sdxl_weights = split_conv_attn(load_from_pretrained(SDXL_REPO, device=device))
|
109 |
+
dpo_weights = split_conv_attn(
|
110 |
+
load_from_pretrained(
|
111 |
+
"mhdang/dpo-sdxl-text2image-v1",
|
112 |
+
"diffusion_pytorch_model.safetensors",
|
113 |
+
device=device,
|
114 |
+
)
|
115 |
+
)
|
116 |
+
jn_weights = split_conv_attn(
|
117 |
+
load_from_pretrained("RunDiffusion/Juggernaut-XL-v9", device=device)
|
118 |
+
)
|
119 |
+
jsdxl_weights = split_conv_attn(load_from_pretrained(JSDXL_REPO, device=device))
|
120 |
+
tensors = [sdxl_weights, dpo_weights, jn_weights, jsdxl_weights]
|
121 |
+
new_conv = merge_models(
|
122 |
+
[sd["conv"] for sd in tensors],
|
123 |
+
[
|
124 |
+
0.15928833971605916,
|
125 |
+
0.1032449268871776,
|
126 |
+
0.6503217149752791,
|
127 |
+
0.08714501842148402,
|
128 |
+
],
|
129 |
+
)
|
130 |
+
new_attn = merge_models(
|
131 |
+
[sd["attn"] for sd in tensors],
|
132 |
+
[
|
133 |
+
0.1877279276437178,
|
134 |
+
0.20014114603909822,
|
135 |
+
0.3922685507065275,
|
136 |
+
0.2198623756106564,
|
137 |
+
],
|
138 |
+
)
|
139 |
+
del sdxl_weights, dpo_weights, jn_weights, jsdxl_weights
|
140 |
+
torch.cuda.empty_cache()
|
141 |
+
unet_config = UNet2DConditionModel.load_config(SDXL_REPO, subfolder="unet")
|
142 |
+
unet = UNet2DConditionModel.from_config(unet_config).to(device=device)
|
143 |
+
unet.load_state_dict({**new_conv, **new_attn})
|
144 |
+
state_dict, network_alphas = LoraLoaderMixin.lora_state_dict(
|
145 |
+
L_REPO, weight_name="sdxl_lightning_4step_lora.safetensors"
|
146 |
+
)
|
147 |
+
LoraLoaderMixin.load_lora_into_unet(state_dict, network_alphas, unet)
|
148 |
+
unet.fuse_lora(lora_scale=3.224682864579401)
|
149 |
+
new_weights = split_conv_attn(unet.state_dict())
|
150 |
+
l_weights = split_conv_attn(
|
151 |
+
load_from_pretrained(
|
152 |
+
L_REPO,
|
153 |
+
"sdxl_lightning_4step_unet.safetensors",
|
154 |
+
subfolder=None,
|
155 |
+
device=device,
|
156 |
+
)
|
157 |
+
)
|
158 |
+
jnl_weights = split_conv_attn(
|
159 |
+
load_from_pretrained(
|
160 |
+
"RunDiffusion/Juggernaut-XL-Lightning",
|
161 |
+
"diffusion_pytorch_model.bin",
|
162 |
+
device=device,
|
163 |
+
)
|
164 |
+
)
|
165 |
+
tensors = [l_weights, jnl_weights, new_weights]
|
166 |
+
new_conv = merge_models(
|
167 |
+
[sd["conv"] for sd in tensors],
|
168 |
+
[0.47222002022088533, 0.48419531030361584, 0.04358466947549889],
|
169 |
+
)
|
170 |
+
new_attn = merge_models(
|
171 |
+
[sd["attn"] for sd in tensors],
|
172 |
+
[0.023119324530758375, 0.04924981616469831, 0.9276308593045434],
|
173 |
+
)
|
174 |
+
new_weights = {**new_conv, **new_attn}
|
175 |
+
unet = UNet2DConditionModel.from_config(unet_config).to(device=device)
|
176 |
+
unet.load_state_dict({**new_conv, **new_attn})
|
177 |
+
|
178 |
+
text_encoder = CLIPTextModelWithProjection.from_pretrained(
|
179 |
+
JSDXL_REPO, subfolder="text_encoder", torch_dtype=torch.float16, variant="fp16"
|
180 |
+
)
|
181 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
182 |
+
JSDXL_REPO, subfolder="tokenizer", use_fast=False
|
183 |
+
)
|
184 |
+
|
185 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(
|
186 |
+
SDXL_REPO,
|
187 |
+
unet=unet,
|
188 |
+
text_encoder=text_encoder,
|
189 |
+
tokenizer=tokenizer,
|
190 |
+
torch_dtype=torch.float16,
|
191 |
+
variant="fp16",
|
192 |
+
)
|
193 |
+
# Ensure sampler uses "trailing" timesteps.
|
194 |
+
pipe.scheduler = EulerDiscreteScheduler.from_config(
|
195 |
+
pipe.scheduler.config, timestep_spacing="trailing"
|
196 |
+
)
|
197 |
+
pipe = pipe.to(device, dtype=torch.float16)
|
198 |
+
return pipe
|
199 |
+
|
200 |
+
|
201 |
+
if __name__ == "__main__":
|
202 |
+
pipe: StableDiffusionXLPipeline = load_evosdxl_jp()
|
203 |
+
images = pipe("犬", num_inference_steps=4, guidance_scale=0).images
|
204 |
+
images[0].save("out.png")
|