File size: 1,765 Bytes
f980e41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
788cf3e
 
 
 
f980e41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
620d16f
437116b
691adc1
96ddd24
788cf3e
f980e41
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
license: apache-2.0
base_model: microsoft/resnet-50
tags:
- generated_from_keras_callback
model-index:
- name: SaladSlayer00/twin_matcher_beta
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# SaladSlayer00/twin_matcher_beta

This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 3.0033
- Validation Loss: 2.8885
- Validation Accuracy: 0.3185
- Epoch: 5

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 5e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32

### Training results

| Train Loss | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:---------------:|:-------------------:|:-----:|
| 7.0814     | 4.8848          | 0.0133              | 0     |
| 4.6679     | 4.5568          | 0.0666              | 1     |
| 4.3536     | 4.1337          | 0.1221              | 2     |
| 3.8915     | 3.6650          | 0.2053              | 3     |
| 3.4256     | 3.2568          | 0.2597              | 4     |
| 3.0033     | 2.8885          | 0.3185              | 5     |


### Framework versions

- Transformers 4.35.2
- TensorFlow 2.15.0
- Datasets 2.16.1
- Tokenizers 0.15.0