File size: 25,405 Bytes
0d1350d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
# -*- coding: utf-8 -*-

import os
import sys
import torch
import logging
import speechbrain as sb
from speechbrain.utils.distributed import run_on_main
from hyperpyyaml import load_hyperpyyaml
from pathlib import Path
import torchaudio.transforms as T
from cv_train import ASRCV
import torchaudio
import numpy as np
import kenlm
from pyctcdecode import build_ctcdecoder
import re
from torch.nn.utils.rnn import pad_sequence
import torch.optim as optim
import torch.nn as nn


# Commented out IPython magic to ensure Python compatibility.
hparams_file, run_opts, overrides = sb.parse_arguments(["hparams/train_semi.yaml"])

# If distributed_launch=True then
# create ddp_group with the right communication protocol
sb.utils.distributed.ddp_init_group(run_opts)

with open(hparams_file) as fin:
    hparams = load_hyperpyyaml(fin, overrides)

# Create experiment directory
sb.create_experiment_directory(
    experiment_directory=hparams["output_folder"],
    hyperparams_to_save=hparams_file,
    overrides=overrides,
)
# Dataset prep (parsing Librispeech)

def dataio_prepare(hparams):
    """This function prepares the datasets to be used in the brain class.
    It also defines the data processing pipeline through user-defined functions."""

    # 1. Define datasets
    data_folder = hparams["data_folder"]

    train_data = sb.dataio.dataset.DynamicItemDataset.from_csv(
        csv_path=hparams["train_csv"], replacements={"data_root": data_folder},
    )

    if hparams["sorting"] == "ascending":
        # we sort training data to speed up training and get better results.
        train_data = train_data.filtered_sorted(
            sort_key="duration",
            key_max_value={"duration": hparams["avoid_if_longer_than"]},
        )
        # when sorting do not shuffle in dataloader ! otherwise is pointless
        hparams["dataloader_options"]["shuffle"] = False

    elif hparams["sorting"] == "descending":
        train_data = train_data.filtered_sorted(
            sort_key="duration",
            reverse=True,
            key_max_value={"duration": hparams["avoid_if_longer_than"]},
        )
        # when sorting do not shuffle in dataloader ! otherwise is pointless
        hparams["dataloader_options"]["shuffle"] = False

    elif hparams["sorting"] == "random":
        pass

    else:
        raise NotImplementedError(
            "sorting must be random, ascending or descending"
        )

    valid_data = sb.dataio.dataset.DynamicItemDataset.from_csv(
        csv_path=hparams["valid_csv"], replacements={"data_root": data_folder},
    )
    # We also sort the validation data so it is faster to validate
    valid_data = valid_data.filtered_sorted(sort_key="duration")
    test_datasets = {}
    for csv_file in hparams["test_csv"]:
        name = Path(csv_file).stem
        test_datasets[name] = sb.dataio.dataset.DynamicItemDataset.from_csv(
            csv_path=csv_file, replacements={"data_root": data_folder}
        )
        test_datasets[name] = test_datasets[name].filtered_sorted(
            sort_key="duration"
        )

    datasets = [train_data, valid_data] + [i for k, i in test_datasets.items()]


    # 2. Define audio pipeline:
    @sb.utils.data_pipeline.takes("wav")
    @sb.utils.data_pipeline.provides("sig")
    def audio_pipeline(wav):
        info = torchaudio.info(wav)
        sig = sb.dataio.dataio.read_audio(wav)
        if len(sig.shape)>1 :
            sig = torch.mean(sig, dim=1)
        resampled = torchaudio.transforms.Resample(
            info.sample_rate, hparams["sample_rate"],
        )(sig)
        return resampled

    sb.dataio.dataset.add_dynamic_item(datasets, audio_pipeline)
    label_encoder = sb.dataio.encoder.CTCTextEncoder()

    # 3. Define text pipeline:
    @sb.utils.data_pipeline.takes("wrd")
    @sb.utils.data_pipeline.provides(
        "wrd", "char_list", "tokens_list", "tokens"
    )
    def text_pipeline(wrd):
        yield wrd
        char_list = list(wrd)
        yield char_list
        tokens_list = label_encoder.encode_sequence(char_list)
        yield tokens_list
        tokens = torch.LongTensor(tokens_list)
        yield tokens

    sb.dataio.dataset.add_dynamic_item(datasets, text_pipeline)
    lab_enc_file = os.path.join(hparams["save_folder"], "label_encoder.txt")
    special_labels = {
        "blank_label": hparams["blank_index"],
        "unk_label": hparams["unk_index"]
    }
    label_encoder.load_or_create(
        path=lab_enc_file,
        from_didatasets=[train_data],
        output_key="char_list",
        special_labels=special_labels,
        sequence_input=True,
    )

    # 4. Set output:
    sb.dataio.dataset.set_output_keys(
        datasets, ["id", "sig", "wrd", "char_list", "tokens"],
    )
    return train_data, valid_data,test_datasets, label_encoder

class ASR(sb.core.Brain):
    def compute_forward(self, batch, stage):
        """Forward computations from the waveform batches to the output probabilities."""

        batch = batch.to(self.device)
        wavs, wav_lens = batch.sig
        wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device)

        if stage == sb.Stage.TRAIN:
            if hasattr(self.hparams, "augmentation"):
                wavs = self.hparams.augmentation(wavs, wav_lens)

        # Forward pass
        feats = self.modules.wav2vec2(wavs, wav_lens)
        x = self.modules.enc(feats)
        logits = self.modules.ctc_lin(x)
        p_ctc = self.hparams.log_softmax(logits)

        return p_ctc, wav_lens

    def custom_encode(self,wavs,wav_lens) :
        wavs = wavs.to(self.device)
        if(wav_lens is not None): wav_lens.to(self.device)

        feats = self.modules.wav2vec2(wavs, wav_lens)
        x = self.modules.enc(feats)
        logits = self.modules.ctc_lin(x)
        p_ctc = self.hparams.log_softmax(logits)

        return feats,p_ctc



    def compute_objectives(self, predictions, batch, stage):
        """Computes the loss (CTC) given predictions and targets."""

        p_ctc, wav_lens = predictions

        ids = batch.id
        tokens, tokens_lens = batch.tokens

        loss = self.hparams.ctc_cost(p_ctc, tokens, wav_lens, tokens_lens)

        if stage != sb.Stage.TRAIN:
            predicted_tokens = sb.decoders.ctc_greedy_decode(
                p_ctc, wav_lens, blank_id=self.hparams.blank_index
            )
            # Decode token terms to words
            if self.hparams.use_language_modelling:
                predicted_words = []
                for logs in p_ctc:
                    text = decoder.decode(logs.detach().cpu().numpy())
                    predicted_words.append(text.split(" "))
            else:
                predicted_words = [
                    "".join(self.tokenizer.decode_ndim(utt_seq)).split(" ")
                    for utt_seq in predicted_tokens
                ]
            # Convert indices to words
            target_words = [wrd.split(" ") for wrd in batch.wrd]

            self.wer_metric.append(ids, predicted_words, target_words)
            self.cer_metric.append(ids, predicted_words, target_words)

        return loss

    def fit_batch(self, batch):
        """Train the parameters given a single batch in input"""
        should_step = self.step % self.grad_accumulation_factor == 0
        # Managing automatic mixed precision
        # TOFIX: CTC fine-tuning currently is unstable
        # This is certainly due to CTC being done in fp16 instead of fp32
        if self.auto_mix_prec:
            with torch.cuda.amp.autocast():
                with self.no_sync():
                    outputs = self.compute_forward(batch, sb.Stage.TRAIN)
                loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN)
            with self.no_sync(not should_step):
                self.scaler.scale(
                    loss / self.grad_accumulation_factor
                ).backward()
            if should_step:

                if not self.hparams.wav2vec2.freeze:
                    self.scaler.unscale_(self.wav2vec_optimizer)
                self.scaler.unscale_(self.model_optimizer)
                if self.check_gradients(loss):
                    if not self.hparams.wav2vec2.freeze:
                        if self.optimizer_step >= self.hparams.warmup_steps:
                            self.scaler.step(self.wav2vec_optimizer)
                    self.scaler.step(self.model_optimizer)
                self.scaler.update()
                self.zero_grad()
                self.optimizer_step += 1
        else:
            # This is mandatory because HF models have a weird behavior with DDP
            # on the forward pass
            with self.no_sync():
                outputs = self.compute_forward(batch, sb.Stage.TRAIN)

            loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN)

            with self.no_sync(not should_step):
                (loss / self.grad_accumulation_factor).backward()
            if should_step:
                if self.check_gradients(loss):
                    if not self.hparams.wav2vec2.freeze:
                        if self.optimizer_step >= self.hparams.warmup_steps:
                            self.wav2vec_optimizer.step()
                    self.model_optimizer.step()
                self.zero_grad()
                self.optimizer_step += 1

        self.on_fit_batch_end(batch, outputs, loss, should_step)
        return loss.detach().cpu()

    def evaluate_batch(self, batch, stage):
        """Computations needed for validation/test batches"""
        predictions = self.compute_forward(batch, stage=stage)
        with torch.no_grad():
            loss = self.compute_objectives(predictions, batch, stage=stage)
        return loss.detach()

    def on_stage_start(self, stage, epoch):
        """Gets called at the beginning of each epoch"""
        if stage != sb.Stage.TRAIN:
            self.cer_metric = self.hparams.cer_computer()
            self.wer_metric = self.hparams.error_rate_computer()

    def on_stage_end(self, stage, stage_loss, epoch):
        """Gets called at the end of an epoch."""
        # Compute/store important stats
        stage_stats = {"loss": stage_loss}
        if stage == sb.Stage.TRAIN:
            self.train_stats = stage_stats
        else:
            stage_stats["CER"] = self.cer_metric.summarize("error_rate")
            stage_stats["WER"] = self.wer_metric.summarize("error_rate")

        # Perform end-of-iteration things, like annealing, logging, etc.
        if stage == sb.Stage.VALID:
            old_lr_model, new_lr_model = self.hparams.lr_annealing_model(
                stage_stats["loss"]
            )
            old_lr_wav2vec, new_lr_wav2vec = self.hparams.lr_annealing_wav2vec(
                stage_stats["loss"]
            )
            sb.nnet.schedulers.update_learning_rate(
                self.model_optimizer, new_lr_model
            )
            if not self.hparams.wav2vec2.freeze:
                sb.nnet.schedulers.update_learning_rate(
                    self.wav2vec_optimizer, new_lr_wav2vec
                )
            self.hparams.train_logger.log_stats(
                stats_meta={
                    "epoch": epoch,
                    "lr_model": old_lr_model,
                    "lr_wav2vec": old_lr_wav2vec,
                },
                train_stats=self.train_stats,
                valid_stats=stage_stats,
            )
            self.checkpointer.save_and_keep_only(
                meta={"WER": stage_stats["WER"]}, min_keys=["WER"],
            )
        elif stage == sb.Stage.TEST:
            self.hparams.train_logger.log_stats(
                stats_meta={"Epoch loaded": self.hparams.epoch_counter.current},
                test_stats=stage_stats,
            )
            with open(self.hparams.wer_file, "w") as w:
                self.wer_metric.write_stats(w)

    def init_optimizers(self):
        "Initializes the wav2vec2 optimizer and model optimizer"

        # If the wav2vec encoder is unfrozen, we create the optimizer
        if not self.hparams.wav2vec2.freeze:
            self.wav2vec_optimizer = self.hparams.wav2vec_opt_class(
                self.modules.wav2vec2.parameters()
            )
            if self.checkpointer is not None:
                self.checkpointer.add_recoverable(
                    "wav2vec_opt", self.wav2vec_optimizer
                )

        self.model_optimizer = self.hparams.model_opt_class(
            self.hparams.model.parameters()
        )

        if self.checkpointer is not None:
            self.checkpointer.add_recoverable("modelopt", self.model_optimizer)

    def zero_grad(self, set_to_none=False):
        if not self.hparams.wav2vec2.freeze:
            self.wav2vec_optimizer.zero_grad(set_to_none)
        self.model_optimizer.zero_grad(set_to_none)


from speechbrain.pretrained import EncoderASR,EncoderDecoderASR
french_asr_model = EncoderASR.from_hparams(source="speechbrain/asr-wav2vec2-commonvoice-fr", savedir="pretrained_models/asr-wav2vec2-commonvoice-fr").cuda()

cvhparams_file, cvrun_opts, cvoverrides = sb.parse_arguments(["en_cv.yaml"])
with open(cvhparams_file) as cvfin:
    cvhparams = load_hyperpyyaml(cvfin, cvoverrides)
english_asr_model = ASRCV(
        modules=cvhparams["modules"],
        hparams=cvhparams,
        run_opts=cvrun_opts,
        checkpointer=cvhparams["checkpointer"],
    )
english_asr_model.checkpointer.recover_if_possible()
asr_brain = ASR(
    modules=hparams["modules"],
    hparams=hparams,
    run_opts=run_opts,
    checkpointer=hparams["checkpointer"],
)
asr_brain.checkpointer.recover_if_possible()
asr_brain.modules.eval()
english_asr_model.modules.eval()
french_asr_model.mods.eval()

# Commented out IPython magic to ensure Python compatibility.
# %ls

#UTILS FUNCTIOJNS
def get_size_dimensions(arr):
    size_dimensions = []
    while isinstance(arr, list):
        size_dimensions.append(len(arr))
        arr = arr[0]
    return size_dimensions

def scale_array(batch,n):
    scaled_batch = []

    for array in batch:
        if(n < len(array)): raise ValueError("Cannot scale Array down")

        repeat = round(n/len(array))+1
        scaled_length_array= []

        for i in array:
            for j in range(repeat) :
                if(len(scaled_length_array) == n): break
                scaled_length_array.append(i)

        scaled_batch.append(scaled_length_array)

    return torch.tensor(scaled_batch)


def load_paths(wavs_path):
    waveforms = []
    for path in wavs_path :
        waveform, _ = torchaudio.load(path)
        waveforms.append(waveform.squeeze(0))
    # normalize array length to the bigger arrays by pading with 0's
    padded_arrays = pad_sequence(waveforms, batch_first=True)
    return torch.tensor(padded_arrays)



device = 'cuda'
verbose = 0
#FLOW LEVEL FUNCTIONS
def merge_strategy(embeddings1, embeddings2, embeddings3,post1, post2,post3):


    post1 = post1.to(device)
    post2 = post2.to(device)
    post3 = post3.to(device)
    embeddings1 = embeddings1.to(device)
    embeddings2 = embeddings2.to(device)
    embeddings3 = embeddings3.to(device)

    posteriograms_merged = torch.cat((post1,post2,post3),dim=2)
    embeddings_merged = torch.cat((embeddings1,embeddings2,embeddings3),dim=2)

    if(verbose !=0):
      print('MERGED POST ',posteriograms_merged.shape)
      print('MERGED emb ',embeddings_merged.shape)

    return torch.cat((posteriograms_merged,embeddings_merged),dim=2).to(device)

def decode(model,wavs,wav_lens):

    with torch.no_grad():
        wav_lens = wav_lens.to(model.device)
        encoder_out = model.encode_batch(wavs, wav_lens)
        predictions = model.decoding_function(encoder_out, wav_lens)
        return predictions

def middle_layer(batch, lens):

    tn_embeddings, tn_posteriogram = asr_brain.custom_encode(batch,None)

    fr_embeddings = french_asr_model.mods.encoder.wav2vec2(batch)
    fr_posteriogram =french_asr_model.encode_batch(batch,lens)
    en_embeddings = english_asr_model.modules.wav2vec2(batch, lens)
    x = english_asr_model.modules.enc(en_embeddings)
    en_posteriogram = english_asr_model.modules.ctc_lin(x)
    #scores, en_posteriogram = english_asr_model.mods.decoder(en_embeddings ,lens)
    if(verbose !=0):
      print('[EMBEDDINGS] FR:',fr_embeddings.shape, "EN:",en_embeddings.shape, "TN:", tn_embeddings.shape)
      print('[POSTERIOGRAM] FR:',fr_posteriogram.shape, "EN:",en_posteriogram.shape,"TN:",tn_posteriogram.shape)


    bilangual_sample = merge_strategy(fr_embeddings,en_embeddings,tn_embeddings,fr_posteriogram,en_posteriogram,tn_posteriogram)
    return bilangual_sample

class Mixer(sb.core.Brain):

    def compute_forward(self, batch, stage):
        """Forward computations from the waveform batches to the output probabilities."""
        wavs, wav_lens = batch.sig
        wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device)

        if stage == sb.Stage.TRAIN:
            if hasattr(self.hparams, "augmentation"):
                wavs = self.hparams.augmentation(wavs, wav_lens)

        multi_langual_feats = middle_layer(wavs, wav_lens)
        multi_langual_feats= multi_langual_feats.to(device)
        feats, _ = self.modules.enc(multi_langual_feats)
        logits = self.modules.ctc_lin(feats)
        p_ctc = self.hparams.log_softmax(logits)
        
        if stage!= sb.Stage.TRAIN:
            p_tokens = sb.decoders.ctc_greedy_decode(
                p_ctc, wav_lens, blank_id=self.hparams.blank_index
            )
        else : 
            p_tokens = None
        return p_ctc, wav_lens, p_tokens

    def compute_objectives(self, predictions, batch, stage):
        """Computes the loss (CTC) given predictions and targets."""

        p_ctc, wav_lens , predicted_tokens= predictions

        ids = batch.id
        tokens, tokens_lens = batch.tokens

        loss = self.hparams.ctc_cost(p_ctc, tokens, wav_lens, tokens_lens)


        if stage == sb.Stage.VALID:
            predicted_words = [
                "".join(self.tokenizer.decode_ndim(utt_seq)).split(" ")
                for utt_seq in predicted_tokens
            ]
            target_words = [wrd.split(" ") for wrd in batch.wrd]
            self.wer_metric.append(ids, predicted_words, target_words)
            self.cer_metric.append(ids, predicted_words, target_words)
        if stage ==sb.Stage.TEST : 
            if self.hparams.language_modelling:
                predicted_words = []
                for logs in p_ctc:
                    text = decoder.decode(logs.detach().cpu().numpy())
                    predicted_words.append(text.split(" "))
            else : 
                predicted_words = [
                    "".join(self.tokenizer.decode_ndim(utt_seq)).split(" ")
                    for utt_seq in predicted_tokens
                ]

            target_words = [wrd.split(" ") for wrd in batch.wrd]
            self.wer_metric.append(ids, predicted_words, target_words)
            self.cer_metric.append(ids, predicted_words, target_words)

        return loss

    def fit_batch(self, batch):
        """Train the parameters given a single batch in input"""
        should_step = self.step % self.grad_accumulation_factor == 0
        # Managing automatic mixed precision
        # TOFIX: CTC fine-tuning currently is unstable
        # This is certainly due to CTC being done in fp16 instead of fp32
        if self.auto_mix_prec:
            with torch.cuda.amp.autocast():
                with self.no_sync():
                    outputs = self.compute_forward(batch, sb.Stage.TRAIN)
                loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN)
            with self.no_sync(not should_step):
                self.scaler.scale(
                    loss / self.grad_accumulation_factor
                ).backward()
            if should_step:


                self.scaler.unscale_(self.model_optimizer)
                if self.check_gradients(loss):
                    self.scaler.step(self.model_optimizer)
                self.scaler.update()
                self.zero_grad()
                self.optimizer_step += 1
        else:
            # This is mandatory because HF models have a weird behavior with DDP
            # on the forward pass
            with self.no_sync():
                outputs = self.compute_forward(batch, sb.Stage.TRAIN)

            loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN)

            with self.no_sync(not should_step):
                (loss / self.grad_accumulation_factor).backward()
            if should_step:
                if self.check_gradients(loss):
                    self.model_optimizer.step()
                self.zero_grad()
                self.optimizer_step += 1

        self.on_fit_batch_end(batch, outputs, loss, should_step)
        return loss.detach().cpu()

    def evaluate_batch(self, batch, stage):
        """Computations needed for validation/test batches"""
        predictions = self.compute_forward(batch, stage=stage)
        with torch.no_grad():
            loss = self.compute_objectives(predictions, batch, stage=stage)
        return loss.detach()

    def on_stage_start(self, stage, epoch):
        """Gets called at the beginning of each epoch"""
        if stage != sb.Stage.TRAIN:
            self.cer_metric = self.hparams.cer_computer()
            self.wer_metric = self.hparams.error_rate_computer()

    def on_stage_end(self, stage, stage_loss, epoch):
        """Gets called at the end of an epoch."""
        # Compute/store important stats
        stage_stats = {"loss": stage_loss}
        if stage == sb.Stage.TRAIN:
            self.train_stats = stage_stats
        else:
            stage_stats["CER"] = self.cer_metric.summarize("error_rate")
            stage_stats["WER"] = self.wer_metric.summarize("error_rate")

        # Perform end-of-iteration things, like annealing, logging, etc.
        if stage == sb.Stage.VALID:
            old_lr_model, new_lr_model = self.hparams.lr_annealing_model(
                stage_stats["loss"]
            )
            sb.nnet.schedulers.update_learning_rate(
                self.model_optimizer, new_lr_model
            )
            self.hparams.train_logger.log_stats(
                stats_meta={
                    "epoch": epoch,
                    "lr_model": old_lr_model,
                },
                train_stats=self.train_stats,
                valid_stats=stage_stats,
            )
            self.checkpointer.save_and_keep_only(
                meta={"WER": stage_stats["WER"]}, min_keys=["WER"],
            )
        elif stage == sb.Stage.TEST:
            self.hparams.train_logger.log_stats(
                stats_meta={"Epoch loaded": self.hparams.epoch_counter.current},
                test_stats=stage_stats,
            )
            with open(self.hparams.wer_file, "w") as w:
                self.wer_metric.write_stats(w)

    def init_optimizers(self):

        self.model_optimizer = self.hparams.model_opt_class(
            self.hparams.model.parameters()
        )

        if self.checkpointer is not None:
            self.checkpointer.add_recoverable("modelopt", self.model_optimizer)

    def zero_grad(self, set_to_none=False):

        self.model_optimizer.zero_grad(set_to_none)


hparams_file, run_opts, overrides = sb.parse_arguments(sys.argv[1:])

# If distributed_launch=True then
# create ddp_group with the right communication protocol
sb.utils.distributed.ddp_init_group(run_opts)

with open(hparams_file) as fin:
    hparams = load_hyperpyyaml(fin, overrides)

# Create experiment directory
sb.create_experiment_directory(
    experiment_directory=hparams["output_folder"],
    hyperparams_to_save=hparams_file,
    overrides=overrides,
)
def read_labels_file(labels_file):
    with open(labels_file, "r",encoding="utf-8") as lf:
        lines = lf.read().splitlines()
        division = "==="
        numbers = {}
        for line in lines :
            if division in line :
                break
            string, number = line.split("=>")
            number = int(number)
            string = string[1:-2]
            numbers[number] = string
        return [numbers[x] for x in range(len(numbers))]
train_data, valid_data, test_datasets, label_encoder = dataio_prepare(
        hparams
    )


labels = read_labels_file(os.path.join(hparams["save_folder"], "label_encoder.txt"))
labels = [""] + labels[1:-1] + ["1"] 
if hparams["language_modelling"]:
    decoder = build_ctcdecoder(
        labels,
        kenlm_model_path=hparams["ngram_lm_path"],  # either .arpa or .bin file
        alpha=0.5,  # tuned on a val set
        beta=1,  # tuned on a val set
    )




mixer = Mixer(
    modules=hparams["modules"],
    hparams=hparams,
    run_opts=run_opts,
    checkpointer=hparams["checkpointer"],
)
mixer.tokenizer = label_encoder


mixer.fit(
    mixer.hparams.epoch_counter,
    train_data,
    valid_data,
    train_loader_kwargs=hparams["dataloader_options"],
    valid_loader_kwargs=hparams["test_dataloader_options"],
)
print(test_datasets.keys())
for k in test_datasets.keys():  # keys are test_clean, test_other etc
    mixer.hparams.wer_file = os.path.join(
        hparams["output_folder"], "wer_{}.txt".format(k)
    )
    mixer.evaluate(
        test_datasets[k], test_loader_kwargs=hparams["test_dataloader_options"]
        )