anonymoussubmitter222
working version, needs better readm
ed25c49
raw
history blame contribute delete
No virus
27.6 kB
import os
import sys
import torch
import logging
import speechbrain as sb
from speechbrain.utils.distributed import run_on_main
from hyperpyyaml import load_hyperpyyaml
from pathlib import Path
import torchaudio.transforms as T
from cv_train import ASRCV
import torchaudio
import numpy as np
import kenlm
from pyctcdecode import build_ctcdecoder
import re
from torch.nn.utils.rnn import pad_sequence
import torch.optim as optim
import torch.nn as nn
# Commented out IPython magic to ensure Python compatibility.
hparams_file, run_opts, overrides = sb.parse_arguments(["TunisianASR/semi_trained.yaml"])
# If distributed_launch=True then
# create ddp_group with the right communication protocol
sb.utils.distributed.ddp_init_group(run_opts)
with open(hparams_file) as fin:
hparams = load_hyperpyyaml(fin, overrides)
# Create experiment directory
sb.create_experiment_directory(
experiment_directory=hparams["output_folder"],
hyperparams_to_save=hparams_file,
overrides=overrides,
)
# Dataset prep (parsing Librispeech)
def dataio_prepare(hparams):
"""This function prepares the datasets to be used in the brain class.
It also defines the data processing pipeline through user-defined functions."""
# 1. Define datasets
data_folder = hparams["data_folder"]
train_data = sb.dataio.dataset.DynamicItemDataset.from_csv(
csv_path=hparams["train_csv"], replacements={"data_root": data_folder},
)
if hparams["sorting"] == "ascending":
# we sort training data to speed up training and get better results.
train_data = train_data.filtered_sorted(
sort_key="duration",
key_max_value={"duration": hparams["avoid_if_longer_than"]},
)
# when sorting do not shuffle in dataloader ! otherwise is pointless
hparams["dataloader_options"]["shuffle"] = False
elif hparams["sorting"] == "descending":
train_data = train_data.filtered_sorted(
sort_key="duration",
reverse=True,
key_max_value={"duration": hparams["avoid_if_longer_than"]},
)
# when sorting do not shuffle in dataloader ! otherwise is pointless
hparams["dataloader_options"]["shuffle"] = False
elif hparams["sorting"] == "random":
pass
else:
raise NotImplementedError(
"sorting must be random, ascending or descending"
)
valid_data = sb.dataio.dataset.DynamicItemDataset.from_csv(
csv_path=hparams["valid_csv"], replacements={"data_root": data_folder},
)
# We also sort the validation data so it is faster to validate
valid_data = valid_data.filtered_sorted(sort_key="duration")
test_datasets = {}
for csv_file in hparams["test_csv"]:
name = Path(csv_file).stem
test_datasets[name] = sb.dataio.dataset.DynamicItemDataset.from_csv(
csv_path=csv_file, replacements={"data_root": data_folder}
)
test_datasets[name] = test_datasets[name].filtered_sorted(
sort_key="duration"
)
datasets = [train_data, valid_data] + [i for k, i in test_datasets.items()]
# 2. Define audio pipeline:
@sb.utils.data_pipeline.takes("wav")
@sb.utils.data_pipeline.provides("sig")
def audio_pipeline(wav):
info = torchaudio.info(wav)
sig = sb.dataio.dataio.read_audio(wav)
if len(sig.shape)>1 :
sig = torch.mean(sig, dim=1)
resampled = torchaudio.transforms.Resample(
info.sample_rate, hparams["sample_rate"],
)(sig)
return resampled
sb.dataio.dataset.add_dynamic_item(datasets, audio_pipeline)
label_encoder = sb.dataio.encoder.CTCTextEncoder()
# 3. Define text pipeline:
@sb.utils.data_pipeline.takes("wrd")
@sb.utils.data_pipeline.provides(
"wrd", "char_list", "tokens_list", "tokens"
)
def text_pipeline(wrd):
yield wrd
char_list = list(wrd)
yield char_list
tokens_list = label_encoder.encode_sequence(char_list)
yield tokens_list
tokens = torch.LongTensor(tokens_list)
yield tokens
sb.dataio.dataset.add_dynamic_item(datasets, text_pipeline)
lab_enc_file = os.path.join(hparams["save_folder"], "label_encoder.txt")
special_labels = {
"blank_label": hparams["blank_index"],
"unk_label": hparams["unk_index"]
}
label_encoder.load_or_create(
path=lab_enc_file,
from_didatasets=[train_data],
output_key="char_list",
special_labels=special_labels,
sequence_input=True,
)
# 4. Set output:
sb.dataio.dataset.set_output_keys(
datasets, ["id", "sig", "wrd", "char_list", "tokens"],
)
return train_data, valid_data,test_datasets, label_encoder
class ASR(sb.core.Brain):
def compute_forward(self, batch, stage):
"""Forward computations from the waveform batches to the output probabilities."""
batch = batch.to(self.device)
wavs, wav_lens = batch.sig
wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device)
if stage == sb.Stage.TRAIN:
if hasattr(self.hparams, "augmentation"):
wavs = self.hparams.augmentation(wavs, wav_lens)
# Forward pass
feats = self.modules.wav2vec2(wavs, wav_lens)
x = self.modules.enc(feats)
logits = self.modules.ctc_lin(x)
p_ctc = self.hparams.log_softmax(logits)
return p_ctc, wav_lens
def custom_encode(self,wavs,wav_lens) :
wavs = wavs.to("cpu")
if(wav_lens is not None): wav_lens.to(self.device)
feats = self.modules.wav2vec2(wavs, wav_lens)
x = self.modules.enc(feats)
logits = self.modules.ctc_lin(x)
p_ctc = self.hparams.log_softmax(logits)
return feats,p_ctc
def compute_objectives(self, predictions, batch, stage):
"""Computes the loss (CTC) given predictions and targets."""
p_ctc, wav_lens = predictions
ids = batch.id
tokens, tokens_lens = batch.tokens
loss = self.hparams.ctc_cost(p_ctc, tokens, wav_lens, tokens_lens)
if stage != sb.Stage.TRAIN:
predicted_tokens = sb.decoders.ctc_greedy_decode(
p_ctc, wav_lens, blank_id=self.hparams.blank_index
)
# Decode token terms to words
if self.hparams.use_language_modelling:
predicted_words = []
for logs in p_ctc:
text = decoder.decode(logs.detach().cpu().numpy())
predicted_words.append(text.split(" "))
else:
predicted_words = [
"".join(self.tokenizer.decode_ndim(utt_seq)).split(" ")
for utt_seq in predicted_tokens
]
# Convert indices to words
target_words = [wrd.split(" ") for wrd in batch.wrd]
self.wer_metric.append(ids, predicted_words, target_words)
self.cer_metric.append(ids, predicted_words, target_words)
return loss
def fit_batch(self, batch):
"""Train the parameters given a single batch in input"""
should_step = self.step % self.grad_accumulation_factor == 0
# Managing automatic mixed precision
# TOFIX: CTC fine-tuning currently is unstable
# This is certainly due to CTC being done in fp16 instead of fp32
if self.auto_mix_prec:
with torch.cuda.amp.autocast():
with self.no_sync():
outputs = self.compute_forward(batch, sb.Stage.TRAIN)
loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN)
with self.no_sync(not should_step):
self.scaler.scale(
loss / self.grad_accumulation_factor
).backward()
if should_step:
if not self.hparams.wav2vec2.freeze:
self.scaler.unscale_(self.wav2vec_optimizer)
self.scaler.unscale_(self.model_optimizer)
if self.check_gradients(loss):
if not self.hparams.wav2vec2.freeze:
if self.optimizer_step >= self.hparams.warmup_steps:
self.scaler.step(self.wav2vec_optimizer)
self.scaler.step(self.model_optimizer)
self.scaler.update()
self.zero_grad()
self.optimizer_step += 1
else:
# This is mandatory because HF models have a weird behavior with DDP
# on the forward pass
with self.no_sync():
outputs = self.compute_forward(batch, sb.Stage.TRAIN)
loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN)
with self.no_sync(not should_step):
(loss / self.grad_accumulation_factor).backward()
if should_step:
if self.check_gradients(loss):
if not self.hparams.wav2vec2.freeze:
if self.optimizer_step >= self.hparams.warmup_steps:
self.wav2vec_optimizer.step()
self.model_optimizer.step()
self.zero_grad()
self.optimizer_step += 1
self.on_fit_batch_end(batch, outputs, loss, should_step)
return loss.detach().cpu()
def evaluate_batch(self, batch, stage):
"""Computations needed for validation/test batches"""
predictions = self.compute_forward(batch, stage=stage)
with torch.no_grad():
loss = self.compute_objectives(predictions, batch, stage=stage)
return loss.detach()
def on_stage_start(self, stage, epoch):
"""Gets called at the beginning of each epoch"""
if stage != sb.Stage.TRAIN:
self.cer_metric = self.hparams.cer_computer()
self.wer_metric = self.hparams.error_rate_computer()
def on_stage_end(self, stage, stage_loss, epoch):
"""Gets called at the end of an epoch."""
# Compute/store important stats
stage_stats = {"loss": stage_loss}
if stage == sb.Stage.TRAIN:
self.train_stats = stage_stats
else:
stage_stats["CER"] = self.cer_metric.summarize("error_rate")
stage_stats["WER"] = self.wer_metric.summarize("error_rate")
# Perform end-of-iteration things, like annealing, logging, etc.
if stage == sb.Stage.VALID:
old_lr_model, new_lr_model = self.hparams.lr_annealing_model(
stage_stats["loss"]
)
old_lr_wav2vec, new_lr_wav2vec = self.hparams.lr_annealing_wav2vec(
stage_stats["loss"]
)
sb.nnet.schedulers.update_learning_rate(
self.model_optimizer, new_lr_model
)
if not self.hparams.wav2vec2.freeze:
sb.nnet.schedulers.update_learning_rate(
self.wav2vec_optimizer, new_lr_wav2vec
)
self.hparams.train_logger.log_stats(
stats_meta={
"epoch": epoch,
"lr_model": old_lr_model,
"lr_wav2vec": old_lr_wav2vec,
},
train_stats=self.train_stats,
valid_stats=stage_stats,
)
self.checkpointer.save_and_keep_only(
meta={"WER": stage_stats["WER"]}, min_keys=["WER"],
)
elif stage == sb.Stage.TEST:
self.hparams.train_logger.log_stats(
stats_meta={"Epoch loaded": self.hparams.epoch_counter.current},
test_stats=stage_stats,
)
with open(self.hparams.wer_file, "w") as w:
self.wer_metric.write_stats(w)
def init_optimizers(self):
"Initializes the wav2vec2 optimizer and model optimizer"
# If the wav2vec encoder is unfrozen, we create the optimizer
if not self.hparams.wav2vec2.freeze:
self.wav2vec_optimizer = self.hparams.wav2vec_opt_class(
self.modules.wav2vec2.parameters()
)
if self.checkpointer is not None:
self.checkpointer.add_recoverable(
"wav2vec_opt", self.wav2vec_optimizer
)
self.model_optimizer = self.hparams.model_opt_class(
self.hparams.model.parameters()
)
if self.checkpointer is not None:
self.checkpointer.add_recoverable("modelopt", self.model_optimizer)
def zero_grad(self, set_to_none=False):
if not self.hparams.wav2vec2.freeze:
self.wav2vec_optimizer.zero_grad(set_to_none)
self.model_optimizer.zero_grad(set_to_none)
from speechbrain.pretrained import EncoderASR,EncoderDecoderASR
french_asr_model = EncoderASR.from_hparams(source="asr-wav2vec2-commonvoice-fr", savedir="pretrained_models/asr-wav2vec2-commonvoice-fr").cuda()
french_asr_model.to("cpu")
cvhparams_file, cvrun_opts, cvoverrides = sb.parse_arguments(["EnglishCV/train_en_with_wav2vec.yaml"])
with open(cvhparams_file) as cvfin:
cvhparams = load_hyperpyyaml(cvfin, cvoverrides)
english_asr_model = ASRCV(
modules=cvhparams["modules"],
hparams=cvhparams,
run_opts=cvrun_opts,
checkpointer=cvhparams["checkpointer"],
)
english_asr_model.modules.to("cpu")
english_asr_model.checkpointer.recover_if_possible()
print("moving to tunisian model")
asr_brain = ASR(
modules=hparams["modules"],
hparams=hparams,
run_opts=run_opts,
checkpointer=hparams["checkpointer"],
)
asr_brain.modules.to("cpu")
asr_brain.checkpointer.recover_if_possible()
asr_brain.modules.eval()
english_asr_model.modules.eval()
french_asr_model.mods.eval()
asr_brain.modules.to("cpu")
# Commented out IPython magic to ensure Python compatibility.
# %ls
#UTILS FUNCTIOJNS
def get_size_dimensions(arr):
size_dimensions = []
while isinstance(arr, list):
size_dimensions.append(len(arr))
arr = arr[0]
return size_dimensions
def scale_array(batch,n):
scaled_batch = []
for array in batch:
if(n < len(array)): raise ValueError("Cannot scale Array down")
repeat = round(n/len(array))+1
scaled_length_array= []
for i in array:
for j in range(repeat) :
if(len(scaled_length_array) == n): break
scaled_length_array.append(i)
scaled_batch.append(scaled_length_array)
return torch.tensor(scaled_batch)
def load_paths(wavs_path):
waveforms = []
for path in wavs_path :
waveform, _ = torchaudio.load(path)
waveforms.append(waveform.squeeze(0))
# normalize array length to the bigger arrays by pading with 0's
padded_arrays = pad_sequence(waveforms, batch_first=True)
return torch.tensor(padded_arrays)
device = 'cuda'
verbose = 0
#FLOW LEVEL FUNCTIONS
def merge_strategy(embeddings1, embeddings2, embeddings3,post1, post2,post3):
post1 = post1.to(device)
post2 = post2.to(device)
post3 = post3.to(device)
embeddings1 = embeddings1.to(device)
embeddings2 = embeddings2.to(device)
embeddings3 = embeddings3.to(device)
posteriograms_merged = torch.cat((post1,post2,post3),dim=2)
embeddings_merged = torch.cat((embeddings1,embeddings2,embeddings3),dim=2)
if(verbose !=0):
print('MERGED POST ',posteriograms_merged.shape)
print('MERGED emb ',embeddings_merged.shape)
return torch.cat((posteriograms_merged,embeddings_merged),dim=2).to(device)
def decode(model,wavs,wav_lens):
with torch.no_grad():
wav_lens = wav_lens.to(model.device)
encoder_out = model.encode_batch(wavs, wav_lens)
predictions = model.decoding_function(encoder_out, wav_lens)
return predictions
def middle_layer(batch, lens):
tn_embeddings, tn_posteriogram = asr_brain.custom_encode(batch,None)
fr_embeddings = french_asr_model.mods.encoder.wav2vec2(batch)
fr_posteriogram =french_asr_model.encode_batch(batch,lens)
en_embeddings = english_asr_model.modules.wav2vec2(batch, lens)
x = english_asr_model.modules.enc(en_embeddings)
en_posteriogram = english_asr_model.modules.ctc_lin(x)
#scores, en_posteriogram = english_asr_model.mods.decoder(en_embeddings ,lens)
if(verbose !=0):
print('[EMBEDDINGS] FR:',fr_embeddings.shape, "EN:",en_embeddings.shape, "TN:", tn_embeddings.shape)
print('[POSTERIOGRAM] FR:',fr_posteriogram.shape, "EN:",en_posteriogram.shape,"TN:",tn_posteriogram.shape)
bilangual_sample = merge_strategy(fr_embeddings,en_embeddings,tn_embeddings,fr_posteriogram,en_posteriogram,tn_posteriogram)
return bilangual_sample
class Mixer(sb.core.Brain):
def compute_forward(self, batch, stage):
"""Forward computations from the waveform batches to the output probabilities."""
wavs, wav_lens = batch.sig
wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device)
if stage == sb.Stage.TRAIN:
if hasattr(self.hparams, "augmentation"):
wavs = self.hparams.augmentation(wavs, wav_lens)
multi_langual_feats = middle_layer(wavs, wav_lens)
multi_langual_feats= multi_langual_feats.to(device)
feats, _ = self.modules.enc(multi_langual_feats)
logits = self.modules.ctc_lin(feats)
p_ctc = self.hparams.log_softmax(logits)
if stage!= sb.Stage.TRAIN:
p_tokens = sb.decoders.ctc_greedy_decode(
p_ctc, wav_lens, blank_id=self.hparams.blank_index
)
else :
p_tokens = None
return p_ctc, wav_lens, p_tokens
def treat_wav(self,sig):
multi_langual_feats = middle_layer(sig.to("cpu"), torch.tensor([1]).to("cpu"))
multi_langual_feats= multi_langual_feats.to(device)
feats, _ = self.modules.enc(multi_langual_feats)
logits = self.modules.ctc_lin(feats)
p_ctc = self.hparams.log_softmax(logits)
predicted_words =[]
for logs in p_ctc:
text = decoder.decode(logs.detach().cpu().numpy())
predicted_words.append(text.split(" "))
return " ".join(predicted_words[0])
def compute_objectives(self, predictions, batch, stage):
"""Computes the loss (CTC) given predictions and targets."""
p_ctc, wav_lens , predicted_tokens= predictions
ids = batch.id
tokens, tokens_lens = batch.tokens
loss = self.hparams.ctc_cost(p_ctc, tokens, wav_lens, tokens_lens)
if stage == sb.Stage.VALID:
predicted_words = [
"".join(self.tokenizer.decode_ndim(utt_seq)).split(" ")
for utt_seq in predicted_tokens
]
target_words = [wrd.split(" ") for wrd in batch.wrd]
self.wer_metric.append(ids, predicted_words, target_words)
self.cer_metric.append(ids, predicted_words, target_words)
if stage ==sb.Stage.TEST :
if self.hparams.language_modelling:
predicted_words = []
for logs in p_ctc:
text = decoder.decode(logs.detach().cpu().numpy())
predicted_words.append(text.split(" "))
else :
predicted_words = [
"".join(self.tokenizer.decode_ndim(utt_seq)).split(" ")
for utt_seq in predicted_tokens
]
target_words = [wrd.split(" ") for wrd in batch.wrd]
self.wer_metric.append(ids, predicted_words, target_words)
self.cer_metric.append(ids, predicted_words, target_words)
return loss
def fit_batch(self, batch):
"""Train the parameters given a single batch in input"""
should_step = self.step % self.grad_accumulation_factor == 0
# Managing automatic mixed precision
# TOFIX: CTC fine-tuning currently is unstable
# This is certainly due to CTC being done in fp16 instead of fp32
if self.auto_mix_prec:
with torch.cuda.amp.autocast():
with self.no_sync():
outputs = self.compute_forward(batch, sb.Stage.TRAIN)
loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN)
with self.no_sync(not should_step):
self.scaler.scale(
loss / self.grad_accumulation_factor
).backward()
if should_step:
self.scaler.unscale_(self.model_optimizer)
if self.check_gradients(loss):
self.scaler.step(self.model_optimizer)
self.scaler.update()
self.zero_grad()
self.optimizer_step += 1
else:
# This is mandatory because HF models have a weird behavior with DDP
# on the forward pass
with self.no_sync():
outputs = self.compute_forward(batch, sb.Stage.TRAIN)
loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN)
with self.no_sync(not should_step):
(loss / self.grad_accumulation_factor).backward()
if should_step:
if self.check_gradients(loss):
self.model_optimizer.step()
self.zero_grad()
self.optimizer_step += 1
self.on_fit_batch_end(batch, outputs, loss, should_step)
return loss.detach().cpu()
def evaluate_batch(self, batch, stage):
"""Computations needed for validation/test batches"""
predictions = self.compute_forward(batch, stage=stage)
with torch.no_grad():
loss = self.compute_objectives(predictions, batch, stage=stage)
return loss.detach()
def on_stage_start(self, stage, epoch):
"""Gets called at the beginning of each epoch"""
if stage != sb.Stage.TRAIN:
self.cer_metric = self.hparams.cer_computer()
self.wer_metric = self.hparams.error_rate_computer()
def on_stage_end(self, stage, stage_loss, epoch):
"""Gets called at the end of an epoch."""
# Compute/store important stats
stage_stats = {"loss": stage_loss}
if stage == sb.Stage.TRAIN:
self.train_stats = stage_stats
else:
stage_stats["CER"] = self.cer_metric.summarize("error_rate")
stage_stats["WER"] = self.wer_metric.summarize("error_rate")
# Perform end-of-iteration things, like annealing, logging, etc.
if stage == sb.Stage.VALID:
old_lr_model, new_lr_model = self.hparams.lr_annealing_model(
stage_stats["loss"]
)
sb.nnet.schedulers.update_learning_rate(
self.model_optimizer, new_lr_model
)
self.hparams.train_logger.log_stats(
stats_meta={
"epoch": epoch,
"lr_model": old_lr_model,
},
train_stats=self.train_stats,
valid_stats=stage_stats,
)
self.checkpointer.save_and_keep_only(
meta={"WER": stage_stats["WER"]}, min_keys=["WER"],
)
elif stage == sb.Stage.TEST:
self.hparams.train_logger.log_stats(
stats_meta={"Epoch loaded": self.hparams.epoch_counter.current},
test_stats=stage_stats,
)
with open(self.hparams.wer_file, "w") as w:
self.wer_metric.write_stats(w)
def init_optimizers(self):
self.model_optimizer = self.hparams.model_opt_class(
self.hparams.model.parameters()
)
if self.checkpointer is not None:
self.checkpointer.add_recoverable("modelopt", self.model_optimizer)
def zero_grad(self, set_to_none=False):
self.model_optimizer.zero_grad(set_to_none)
hparams_file, run_opts, overrides = sb.parse_arguments(["cs.yaml"])
# If distributed_launch=True then
# create ddp_group with the right communication protocol
sb.utils.distributed.ddp_init_group(run_opts)
with open(hparams_file) as fin:
hparams = load_hyperpyyaml(fin, overrides)
# Create experiment directory
sb.create_experiment_directory(
experiment_directory=hparams["output_folder"],
hyperparams_to_save=hparams_file,
overrides=overrides,
)
def read_labels_file(labels_file):
with open(labels_file, "r",encoding="utf-8") as lf:
lines = lf.read().splitlines()
division = "==="
numbers = {}
for line in lines :
if division in line :
break
string, number = line.split("=>")
number = int(number)
string = string[1:-2]
numbers[number] = string
return [numbers[x] for x in range(len(numbers))]
label_encoder = sb.dataio.encoder.CTCTextEncoder()
lab_enc_file = os.path.join(hparams["save_folder"], "label_encoder.txt")
special_labels = {
"blank_label": hparams["blank_index"],
"unk_label": hparams["unk_index"]
}
label_encoder.load_or_create(
path=lab_enc_file,
from_didatasets=[[]],
output_key="char_list",
special_labels=special_labels,
sequence_input=True,
)
labels = read_labels_file(os.path.join(hparams["save_folder"], "label_encoder.txt"))
labels = [""] + labels[1:-1] + ["1"]
if hparams["language_modelling"]:
decoder = build_ctcdecoder(
labels,
kenlm_model_path=hparams["ngram_lm_path"], # either .arpa or .bin file
alpha=0.5, # tuned on a val set
beta=1, # tuned on a val set
)
mixer = Mixer(
modules=hparams["modules"],
hparams=hparams,
run_opts=run_opts,
checkpointer=hparams["checkpointer"],
)
mixer.tokenizer = label_encoder
mixer.checkpointer.recover_if_possible()
mixer.modules.eval()
label_encoder = sb.dataio.encoder.CTCTextEncoder()
# We dynamicaly add the tokenizer to our brain class.
# NB: This tokenizer corresponds to the one used for the LM!!
decoder = build_ctcdecoder(
labels,
kenlm_model_path= "arpas/everything.arpa", # either .arpa or .bin file
alpha=0.5, # tuned on a val set
beta=1, # tuned on a val set
)
run_opts["device"]="cpu"
device = "cpu"
mixer.device= "cpu"
mixer.modules.to("cpu")
from enum import Enum, auto
class Stage(Enum):
TRAIN = auto()
VALID = auto()
TEST = auto()
asr_brain.on_evaluate_start()
asr_brain.modules.eval()
import gradio as gr
def treat_wav_file(file_mic,file_upload ,asr=mixer, device="cpu") :
if (file_mic is not None) and (file_upload is not None):
warn_output = "WARNING: You've uploaded an audio file and used the microphone. The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
wav = file_mic
elif (file_mic is None) and (file_upload is None):
return "ERROR: You have to either use the microphone or upload an audio file"
elif file_mic is not None:
wav = file_mic
else:
wav = file_upload
sig, sr = torchaudio.load(wav)
tensor_wav = sig.to(device)
resampled = torchaudio.functional.resample( tensor_wav, sr, 16000)
sentence = asr.treat_wav(resampled)
return sentence
gr.Interface(
fn=treat_wav_file,
inputs=[gr.Audio(source="microphone", type='filepath', label = "record", optional = True),
gr.Audio(source="upload", type='filepath', label="filein", optional=True)]
,outputs="text").launch()