first commit
Browse files- .gitattributes +1 -0
- README.md +21 -3
- outdomain.arpa +3 -0
- semi_wavlm_large_tunisian_ctc/1234/hyperparams.yaml +194 -0
- semi_wavlm_large_tunisian_ctc/1234/save/CKPT+2023-09-05+01-09-23+00/CKPT.yaml +4 -0
- semi_wavlm_large_tunisian_ctc/1234/save/CKPT+2023-09-05+01-09-23+00/brain.ckpt +3 -0
- semi_wavlm_large_tunisian_ctc/1234/save/CKPT+2023-09-05+01-09-23+00/counter.ckpt +3 -0
- semi_wavlm_large_tunisian_ctc/1234/save/CKPT+2023-09-05+01-09-23+00/dataloader-TRAIN.ckpt +3 -0
- semi_wavlm_large_tunisian_ctc/1234/save/CKPT+2023-09-05+01-09-23+00/model.ckpt +3 -0
- semi_wavlm_large_tunisian_ctc/1234/save/CKPT+2023-09-05+01-09-23+00/modelopt.ckpt +3 -0
- semi_wavlm_large_tunisian_ctc/1234/save/CKPT+2023-09-05+01-09-23+00/scheduler_model.ckpt +3 -0
- semi_wavlm_large_tunisian_ctc/1234/save/CKPT+2023-09-05+01-09-23+00/scheduler_wav2vec.ckpt +3 -0
- semi_wavlm_large_tunisian_ctc/1234/save/CKPT+2023-09-05+01-09-23+00/wav2vec2.ckpt +3 -0
- semi_wavlm_large_tunisian_ctc/1234/save/CKPT+2023-09-05+01-09-23+00/wav2vec_opt.ckpt +3 -0
- semi_wavlm_large_tunisian_ctc/1234/save/label_encoder.txt +44 -0
- train_semi.yaml +175 -0
- train_with_wavlm.py +399 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.arpa filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,3 +1,21 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Tunisian Arabic ASR Model with wav2vec2
|
2 |
+
|
3 |
+
This repository provides all the necessary tools to perform automatic speech recognition from an end-to-end system pretrained on Tunisian arabic dialect
|
4 |
+
|
5 |
+
## Performance
|
6 |
+
the performance of the mode is :
|
7 |
+
| Release Version | |WER (%) | CER (%) |
|
8 |
+
|-----------------|----|---------|---------|
|
9 |
+
| v1.0 | Without LM |11.82 | 6.33 |
|
10 |
+
## Dataset
|
11 |
+
This ASR model was trained on :
|
12 |
+
* TARIC : The corpus, named TARIC (Tunisian Arabic Railway Interaction Corpus) has a collection of audio recordings and transcriptions from dialogues in the Tunisian Railway Transport Network. - [Taric Corpus](https://aclanthology.org/L14-1385/) -
|
13 |
+
* STAC :A corpus of spoken Tunisian Arabic - [STAC Corpus](https://www.researchgate.net/publication/307583782_Spoken_Tunisian_Arabic_Corpus_STAC_Transcription_and_Annotation)
|
14 |
+
* IWSLT : A Tunisian conversational speech - [IWSLT Corpus](https://iwslt.org/2022/dialect)-
|
15 |
+
* Tunspeech : Our custom dataset
|
16 |
+
|
17 |
+
## Install
|
18 |
+
```python
|
19 |
+
pip install speechbrain transformers
|
20 |
+
```
|
21 |
+
|
outdomain.arpa
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:24654c1d236bb1bd367125131c847c4a734e69914eda71a6786964c20440d8fe
|
3 |
+
size 324243244
|
semi_wavlm_large_tunisian_ctc/1234/hyperparams.yaml
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Generated 2023-09-08 from:
|
2 |
+
# /gpfsdsstore/projects/rech/nou/uzn19yk/switched_code_tunisian/train/tunisian_asr/hparams/train_semi.yaml
|
3 |
+
# yamllint disable
|
4 |
+
# ################################
|
5 |
+
# Model: wav2vec2 + DNN + CTC
|
6 |
+
# Augmentation: SpecAugment
|
7 |
+
# Authors: Titouan Parcollet 2021
|
8 |
+
# ################################
|
9 |
+
|
10 |
+
# Seed needs to be set at top of yaml, before objects with parameters are made
|
11 |
+
seed: 1234
|
12 |
+
__set_seed: !!python/object/apply:torch.manual_seed [1234]
|
13 |
+
output_folder: results/semi_wavlm_large_tunisian_ctc/1234
|
14 |
+
wer_file: results/semi_wavlm_large_tunisian_ctc/1234/wer.txt
|
15 |
+
save_folder: results/semi_wavlm_large_tunisian_ctc/1234/save
|
16 |
+
train_log: results/semi_wavlm_large_tunisian_ctc/1234/train_log.txt
|
17 |
+
|
18 |
+
# URL for the biggest LeBenchmark wav2vec french.
|
19 |
+
wav2vec2_folder: results/semi_wavlm_large_tunisian_ctc/1234/save/wav2vec2_checkpoint
|
20 |
+
|
21 |
+
# Data files
|
22 |
+
data_folder: /gpfsscratch/rech/nou/uzn19yk/tunisian_junk # e.g, /localscratch/cv-corpus-5.1-2020-06-22/fr
|
23 |
+
train_tsv_file: /gpfsscratch/rech/nou/uzn19yk/tunisian_junk/train.tsv # Standard CommonVoice .tsv files
|
24 |
+
dev_tsv_file: /gpfsscratch/rech/nou/uzn19yk/tunisian_junk/dev.tsv # Standard CommonVoice .tsv files
|
25 |
+
test_tsv_file: /gpfsscratch/rech/nou/uzn19yk/tunisian_junk/test.tsv # Standard CommonVoice .tsv files
|
26 |
+
accented_letters: true
|
27 |
+
language: fr # use 'it' for Italian, 'rw' for Kinyarwanda, 'en' for english
|
28 |
+
train_csv: /gpfsscratch/rech/nou/uzn19yk/tunisian_csvs/good_final/train_enhanced.csv
|
29 |
+
valid_csv: /gpfsscratch/rech/nou/uzn19yk/tunisian_csvs/good_final/dev.csv
|
30 |
+
test_csv:
|
31 |
+
- /gpfsscratch/rech/nou/uzn19yk/tunisian_csvs/full_annotation_test.csv
|
32 |
+
- /gpfsscratch/rech/nou/uzn19yk/tunisian_csvs/good_final/iwslt_test.csv
|
33 |
+
- /gpfsscratch/rech/nou/uzn19yk/tunisian_csvs/good_final/taric_test.csv
|
34 |
+
|
35 |
+
skip_prep: true # Skip data preparation
|
36 |
+
|
37 |
+
use_language_modelling: true
|
38 |
+
ngram_lm_path: arpas/outdomain.arpa
|
39 |
+
|
40 |
+
# We remove utterance slonger than 10s in the train/dev/test sets as
|
41 |
+
# longer sentences certainly correspond to "open microphones".
|
42 |
+
avoid_if_longer_than: 10.0
|
43 |
+
avoid_if_shorter_than: 1.2
|
44 |
+
|
45 |
+
|
46 |
+
# Training parameters
|
47 |
+
number_of_epochs: 12
|
48 |
+
lr: 1.0
|
49 |
+
lr_wav2vec: 0.0001
|
50 |
+
sorting: ascending
|
51 |
+
auto_mix_prec: false
|
52 |
+
sample_rate: 16000
|
53 |
+
ckpt_interval_minutes: 30 # save checkpoint every N min
|
54 |
+
|
55 |
+
# With data_parallel batch_size is split into N jobs
|
56 |
+
# With DDP batch_size is multiplied by N jobs
|
57 |
+
# Must be 6 per GPU to fit 16GB of VRAM
|
58 |
+
batch_size: 10
|
59 |
+
test_batch_size: 4
|
60 |
+
|
61 |
+
dataloader_options:
|
62 |
+
batch_size: 10
|
63 |
+
num_workers: 6
|
64 |
+
test_dataloader_options:
|
65 |
+
batch_size: 4
|
66 |
+
num_workers: 6
|
67 |
+
|
68 |
+
# BPE parameters
|
69 |
+
token_type: char # ["unigram", "bpe", "char"]
|
70 |
+
character_coverage: 1.0
|
71 |
+
|
72 |
+
# Model parameters
|
73 |
+
# activation: !name:torch.nn.LeakyReLU
|
74 |
+
wav2vec_output_dim: 1024
|
75 |
+
dnn_neurons: 1024
|
76 |
+
freeze_wav2vec: false
|
77 |
+
freeze_feature_extractor: true
|
78 |
+
dropout: 0.15
|
79 |
+
warmup_steps: 500 # The wav2vec 2 model isn't updated for this amount of steps
|
80 |
+
|
81 |
+
# Outputs
|
82 |
+
output_neurons: 40 # BPE size, index(blank/eos/bos) = 0
|
83 |
+
|
84 |
+
# Decoding parameters
|
85 |
+
# Be sure that the bos and eos index match with the BPEs ones
|
86 |
+
blank_index: 0
|
87 |
+
unk_index: 1
|
88 |
+
|
89 |
+
#
|
90 |
+
# Functions and classes
|
91 |
+
#
|
92 |
+
epoch_counter: &id007 !new:speechbrain.utils.epoch_loop.EpochCounter
|
93 |
+
|
94 |
+
limit: 12
|
95 |
+
|
96 |
+
augmentation: !new:speechbrain.lobes.augment.TimeDomainSpecAugment
|
97 |
+
sample_rate: 16000
|
98 |
+
speeds: [95, 100, 105]
|
99 |
+
|
100 |
+
enc: &id002 !new:speechbrain.nnet.containers.Sequential
|
101 |
+
input_shape: [null, null, 1024]
|
102 |
+
linear1: !name:speechbrain.nnet.linear.Linear
|
103 |
+
n_neurons: 1024
|
104 |
+
bias: true
|
105 |
+
bn1: !name:speechbrain.nnet.normalization.BatchNorm1d
|
106 |
+
activation: !new:torch.nn.LeakyReLU
|
107 |
+
drop: !new:torch.nn.Dropout
|
108 |
+
p: 0.15
|
109 |
+
linear2: !name:speechbrain.nnet.linear.Linear
|
110 |
+
n_neurons: 1024
|
111 |
+
bias: true
|
112 |
+
bn2: !name:speechbrain.nnet.normalization.BatchNorm1d
|
113 |
+
activation2: !new:torch.nn.LeakyReLU
|
114 |
+
drop2: !new:torch.nn.Dropout
|
115 |
+
p: 0.15
|
116 |
+
linear3: !name:speechbrain.nnet.linear.Linear
|
117 |
+
n_neurons: 1024
|
118 |
+
bias: true
|
119 |
+
bn3: !name:speechbrain.nnet.normalization.BatchNorm1d
|
120 |
+
activation3: !new:torch.nn.LeakyReLU
|
121 |
+
|
122 |
+
wav2vec2: &id001 !new:speechbrain.lobes.models.huggingface_wav2vec.HuggingFaceWav2Vec2
|
123 |
+
source: /gpfsstore/rech/nou/uzn19yk/wavlm/
|
124 |
+
output_norm: false
|
125 |
+
freeze: false
|
126 |
+
freeze_feature_extractor: true
|
127 |
+
save_path: results/semi_wavlm_large_tunisian_ctc/1234/save/wav2vec2_checkpoint
|
128 |
+
|
129 |
+
#####
|
130 |
+
# Uncomment this block if you prefer to use a Fairseq pretrained model instead
|
131 |
+
# of a HuggingFace one. Here, we provide an URL that is obtained from the
|
132 |
+
# Fairseq github for the multilingual XLSR.
|
133 |
+
#
|
134 |
+
#wav2vec2_url: https://dl.fbaipublicfiles.com/fairseq/wav2vec/xlsr_53_56k.pt
|
135 |
+
#wav2vec2: !new:speechbrain.lobes.models.fairseq_wav2vec.FairseqWav2Vec2
|
136 |
+
# pretrained_path: !ref <wav2vec2_url>
|
137 |
+
# output_norm: True
|
138 |
+
# freeze: False
|
139 |
+
# save_path: !ref <save_folder>/wav2vec2_checkpoint/model.pt
|
140 |
+
#####
|
141 |
+
|
142 |
+
|
143 |
+
ctc_lin: &id003 !new:speechbrain.nnet.linear.Linear
|
144 |
+
|
145 |
+
input_size: 1024
|
146 |
+
n_neurons: 40
|
147 |
+
|
148 |
+
log_softmax: !new:speechbrain.nnet.activations.Softmax
|
149 |
+
apply_log: true
|
150 |
+
|
151 |
+
ctc_cost: !name:speechbrain.nnet.losses.ctc_loss
|
152 |
+
blank_index: 0
|
153 |
+
|
154 |
+
modules:
|
155 |
+
wav2vec2: *id001
|
156 |
+
enc: *id002
|
157 |
+
ctc_lin: *id003
|
158 |
+
model: &id004 !new:torch.nn.ModuleList
|
159 |
+
- [*id002, *id003]
|
160 |
+
model_opt_class: !name:torch.optim.Adadelta
|
161 |
+
lr: 1.0
|
162 |
+
rho: 0.95
|
163 |
+
eps: 1.e-8
|
164 |
+
|
165 |
+
wav2vec_opt_class: !name:torch.optim.Adam
|
166 |
+
lr: 0.0001
|
167 |
+
|
168 |
+
lr_annealing_model: &id005 !new:speechbrain.nnet.schedulers.NewBobScheduler
|
169 |
+
initial_value: 1.0
|
170 |
+
improvement_threshold: 0.0025
|
171 |
+
annealing_factor: 0.8
|
172 |
+
patient: 0
|
173 |
+
|
174 |
+
lr_annealing_wav2vec: &id006 !new:speechbrain.nnet.schedulers.NewBobScheduler
|
175 |
+
initial_value: 0.0001
|
176 |
+
improvement_threshold: 0.0025
|
177 |
+
annealing_factor: 0.9
|
178 |
+
patient: 0
|
179 |
+
|
180 |
+
checkpointer: !new:speechbrain.utils.checkpoints.Checkpointer
|
181 |
+
checkpoints_dir: results/semi_wavlm_large_tunisian_ctc/1234/save
|
182 |
+
recoverables:
|
183 |
+
wav2vec2: *id001
|
184 |
+
model: *id004
|
185 |
+
scheduler_model: *id005
|
186 |
+
scheduler_wav2vec: *id006
|
187 |
+
counter: *id007
|
188 |
+
train_logger: !new:speechbrain.utils.train_logger.FileTrainLogger
|
189 |
+
save_file: results/semi_wavlm_large_tunisian_ctc/1234/train_log.txt
|
190 |
+
|
191 |
+
error_rate_computer: !name:speechbrain.utils.metric_stats.ErrorRateStats
|
192 |
+
|
193 |
+
cer_computer: !name:speechbrain.utils.metric_stats.ErrorRateStats
|
194 |
+
split_tokens: true
|
semi_wavlm_large_tunisian_ctc/1234/save/CKPT+2023-09-05+01-09-23+00/CKPT.yaml
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# yamllint disable
|
2 |
+
WER: 27.83210816487267
|
3 |
+
end-of-epoch: true
|
4 |
+
unixtime: 1693868963.5220973
|
semi_wavlm_large_tunisian_ctc/1234/save/CKPT+2023-09-05+01-09-23+00/brain.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3947a24e8dff5a14299b9cf2fe66ffb4d738cb88717de7f0cf7e8547a76e9776
|
3 |
+
size 51
|
semi_wavlm_large_tunisian_ctc/1234/save/CKPT+2023-09-05+01-09-23+00/counter.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6b51d431df5d7f141cbececcf79edf3dd861c3b4069f0b11661a3eefacbba918
|
3 |
+
size 2
|
semi_wavlm_large_tunisian_ctc/1234/save/CKPT+2023-09-05+01-09-23+00/dataloader-TRAIN.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b363886c229e536bd3c84e0c3e89312d70e00422578e076a62df1b45c9390793
|
3 |
+
size 5
|
semi_wavlm_large_tunisian_ctc/1234/save/CKPT+2023-09-05+01-09-23+00/model.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bc1dbeca1e1f1340b08d8ebea6e492f474708dddbbe8cabbcdde5ee9660704f2
|
3 |
+
size 12814446
|
semi_wavlm_large_tunisian_ctc/1234/save/CKPT+2023-09-05+01-09-23+00/modelopt.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3af1791eb9a5bfbfc087d2c10b94634df24cad3ac503ce9ba280a3ecc4737781
|
3 |
+
size 25575663
|
semi_wavlm_large_tunisian_ctc/1234/save/CKPT+2023-09-05+01-09-23+00/scheduler_model.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c275ab9245b440d1586f72058d9edaac1a2fb3e7a52712aa9a9ad022b99a1c0d
|
3 |
+
size 639
|
semi_wavlm_large_tunisian_ctc/1234/save/CKPT+2023-09-05+01-09-23+00/scheduler_wav2vec.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a88187f7882dc3e10c108f1b7abfbd819285b34bded4e88e91c4ff699c1bb5d2
|
3 |
+
size 643
|
semi_wavlm_large_tunisian_ctc/1234/save/CKPT+2023-09-05+01-09-23+00/wav2vec2.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:788267bd25ef37623715fa21a975090e5e316fff05971375cd3f62e5160f0743
|
3 |
+
size 1262005979
|
semi_wavlm_large_tunisian_ctc/1234/save/CKPT+2023-09-05+01-09-23+00/wav2vec_opt.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:efa967fdd8067be7d88c18cd197980c9c91f344a3dff2b2518b8381c49f28b1e
|
3 |
+
size 2490361859
|
semi_wavlm_large_tunisian_ctc/1234/save/label_encoder.txt
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'ب' => 38
|
2 |
+
'ا' => 1
|
3 |
+
'ه' => 2
|
4 |
+
'ي' => 3
|
5 |
+
'و' => 4
|
6 |
+
'ن' => 5
|
7 |
+
'أ' => 6
|
8 |
+
' ' => 7
|
9 |
+
'م' => 8
|
10 |
+
'ش' => 9
|
11 |
+
'ل' => 10
|
12 |
+
'س' => 11
|
13 |
+
'ت' => 12
|
14 |
+
'د' => 13
|
15 |
+
'ر' => 14
|
16 |
+
'ى' => 15
|
17 |
+
'ح' => 16
|
18 |
+
'ط' => 17
|
19 |
+
'ع' => 18
|
20 |
+
'ك' => 19
|
21 |
+
'ف' => 20
|
22 |
+
'ق' => 21
|
23 |
+
'آ' => 22
|
24 |
+
'ة' => 23
|
25 |
+
'ج' => 24
|
26 |
+
'ض' => 25
|
27 |
+
'ز' => 26
|
28 |
+
'ص' => 27
|
29 |
+
'إ' => 28
|
30 |
+
'ث' => 29
|
31 |
+
'خ' => 30
|
32 |
+
'ڨ' => 31
|
33 |
+
'ذ' => 32
|
34 |
+
'ظ' => 33
|
35 |
+
'ء' => 34
|
36 |
+
'غ' => 35
|
37 |
+
'ئ' => 36
|
38 |
+
'ؤ' => 37
|
39 |
+
'<blank>' => 0
|
40 |
+
1 => 39
|
41 |
+
================
|
42 |
+
'starting_index' => 0
|
43 |
+
'unk_label' => 1
|
44 |
+
'blank_label' => '<blank>'
|
train_semi.yaml
ADDED
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ################################
|
2 |
+
# Model: wav2vec2 + DNN + CTC
|
3 |
+
# Augmentation: SpecAugment
|
4 |
+
# Authors: Titouan Parcollet 2021
|
5 |
+
# ################################
|
6 |
+
|
7 |
+
# Seed needs to be set at top of yaml, before objects with parameters are made
|
8 |
+
seed: 1234
|
9 |
+
__set_seed: !!python/object/apply:torch.manual_seed [!ref <seed>]
|
10 |
+
output_folder: !ref semi_wavlm_large_tunisian_ctc/<seed>
|
11 |
+
wer_file: !ref <output_folder>/wer.txt
|
12 |
+
save_folder: !ref <output_folder>/save
|
13 |
+
train_log: !ref <output_folder>/train_log.txt
|
14 |
+
|
15 |
+
# URL for the biggest LeBenchmark wav2vec french.
|
16 |
+
wav2vec2_folder: !ref <save_folder>/wav2vec2_checkpoint
|
17 |
+
|
18 |
+
# Data files
|
19 |
+
data_folder: /path/to/data # e.g, /localscratch/cv-corpus-5.1-2020-06-22/fr
|
20 |
+
train_tsv_file: !ref <data_folder>/train.tsv # Standard CommonVoice .tsv files
|
21 |
+
dev_tsv_file: !ref <data_folder>/dev.tsv # Standard CommonVoice .tsv files
|
22 |
+
test_tsv_file: !ref <data_folder>/test.tsv # Standard CommonVoice .tsv files
|
23 |
+
accented_letters: True
|
24 |
+
language: fr # use 'it' for Italian, 'rw' for Kinyarwanda, 'en' for english
|
25 |
+
test_csv:
|
26 |
+
- /path/to/test_data
|
27 |
+
|
28 |
+
skip_prep: True # Skip data preparation
|
29 |
+
|
30 |
+
use_language_modelling: True
|
31 |
+
ngram_lm_path: outdomain.arpa
|
32 |
+
|
33 |
+
# We remove utterance slonger than 10s in the train/dev/test sets as
|
34 |
+
# longer sentences certainly correspond to "open microphones".
|
35 |
+
avoid_if_longer_than: 10.0
|
36 |
+
avoid_if_shorter_than: 1.2
|
37 |
+
|
38 |
+
|
39 |
+
# Training parameters
|
40 |
+
number_of_epochs: 12
|
41 |
+
lr: 1.0
|
42 |
+
lr_wav2vec: 0.0001
|
43 |
+
sorting: ascending
|
44 |
+
auto_mix_prec: False
|
45 |
+
sample_rate: 16000
|
46 |
+
ckpt_interval_minutes: 30 # save checkpoint every N min
|
47 |
+
|
48 |
+
# With data_parallel batch_size is split into N jobs
|
49 |
+
# With DDP batch_size is multiplied by N jobs
|
50 |
+
# Must be 6 per GPU to fit 16GB of VRAM
|
51 |
+
batch_size: 10
|
52 |
+
test_batch_size: 4
|
53 |
+
|
54 |
+
dataloader_options:
|
55 |
+
batch_size: !ref <batch_size>
|
56 |
+
num_workers: 6
|
57 |
+
test_dataloader_options:
|
58 |
+
batch_size: !ref <test_batch_size>
|
59 |
+
num_workers: 6
|
60 |
+
|
61 |
+
# BPE parameters
|
62 |
+
token_type: char # ["unigram", "bpe", "char"]
|
63 |
+
character_coverage: 1.0
|
64 |
+
|
65 |
+
# Model parameters
|
66 |
+
# activation: !name:torch.nn.LeakyReLU
|
67 |
+
wav2vec_output_dim: 1024
|
68 |
+
dnn_neurons: 1024
|
69 |
+
freeze_wav2vec: False
|
70 |
+
freeze_feature_extractor: True
|
71 |
+
dropout: 0.15
|
72 |
+
warmup_steps: 500 # The wav2vec 2 model isn't updated for this amount of steps
|
73 |
+
|
74 |
+
# Outputs
|
75 |
+
output_neurons: 40 # BPE size, index(blank/eos/bos) = 0
|
76 |
+
|
77 |
+
# Decoding parameters
|
78 |
+
# Be sure that the bos and eos index match with the BPEs ones
|
79 |
+
blank_index: 0
|
80 |
+
unk_index: 1
|
81 |
+
|
82 |
+
#
|
83 |
+
# Functions and classes
|
84 |
+
#
|
85 |
+
epoch_counter: !new:speechbrain.utils.epoch_loop.EpochCounter
|
86 |
+
limit: !ref <number_of_epochs>
|
87 |
+
|
88 |
+
augmentation: !new:speechbrain.lobes.augment.TimeDomainSpecAugment
|
89 |
+
sample_rate: !ref <sample_rate>
|
90 |
+
speeds: [95, 100, 105]
|
91 |
+
|
92 |
+
enc: !new:speechbrain.nnet.containers.Sequential
|
93 |
+
input_shape: [null, null, !ref <wav2vec_output_dim>]
|
94 |
+
linear1: !name:speechbrain.nnet.linear.Linear
|
95 |
+
n_neurons: !ref <dnn_neurons>
|
96 |
+
bias: True
|
97 |
+
bn1: !name:speechbrain.nnet.normalization.BatchNorm1d
|
98 |
+
activation: !new:torch.nn.LeakyReLU
|
99 |
+
drop: !new:torch.nn.Dropout
|
100 |
+
p: !ref <dropout>
|
101 |
+
linear2: !name:speechbrain.nnet.linear.Linear
|
102 |
+
n_neurons: !ref <dnn_neurons>
|
103 |
+
bias: True
|
104 |
+
bn2: !name:speechbrain.nnet.normalization.BatchNorm1d
|
105 |
+
activation2: !new:torch.nn.LeakyReLU
|
106 |
+
drop2: !new:torch.nn.Dropout
|
107 |
+
p: !ref <dropout>
|
108 |
+
linear3: !name:speechbrain.nnet.linear.Linear
|
109 |
+
n_neurons: !ref <dnn_neurons>
|
110 |
+
bias: True
|
111 |
+
bn3: !name:speechbrain.nnet.normalization.BatchNorm1d
|
112 |
+
activation3: !new:torch.nn.LeakyReLU
|
113 |
+
|
114 |
+
wav2vec2: !new:speechbrain.lobes.models.huggingface_wav2vec.HuggingFaceWav2Vec2
|
115 |
+
source: /gpfsstore/rech/nou/uzn19yk/wavlm/
|
116 |
+
output_norm: False
|
117 |
+
freeze: !ref <freeze_wav2vec>
|
118 |
+
freeze_feature_extractor: !ref <freeze_feature_extractor>
|
119 |
+
save_path: !ref <wav2vec2_folder>
|
120 |
+
|
121 |
+
|
122 |
+
ctc_lin: !new:speechbrain.nnet.linear.Linear
|
123 |
+
input_size: !ref <dnn_neurons>
|
124 |
+
n_neurons: !ref <output_neurons>
|
125 |
+
|
126 |
+
log_softmax: !new:speechbrain.nnet.activations.Softmax
|
127 |
+
apply_log: True
|
128 |
+
|
129 |
+
ctc_cost: !name:speechbrain.nnet.losses.ctc_loss
|
130 |
+
blank_index: !ref <blank_index>
|
131 |
+
|
132 |
+
modules:
|
133 |
+
wav2vec2: !ref <wav2vec2>
|
134 |
+
enc: !ref <enc>
|
135 |
+
ctc_lin: !ref <ctc_lin>
|
136 |
+
|
137 |
+
model: !new:torch.nn.ModuleList
|
138 |
+
- [!ref <enc>, !ref <ctc_lin>]
|
139 |
+
|
140 |
+
model_opt_class: !name:torch.optim.Adadelta
|
141 |
+
lr: !ref <lr>
|
142 |
+
rho: 0.95
|
143 |
+
eps: 1.e-8
|
144 |
+
|
145 |
+
wav2vec_opt_class: !name:torch.optim.Adam
|
146 |
+
lr: !ref <lr_wav2vec>
|
147 |
+
|
148 |
+
lr_annealing_model: !new:speechbrain.nnet.schedulers.NewBobScheduler
|
149 |
+
initial_value: !ref <lr>
|
150 |
+
improvement_threshold: 0.0025
|
151 |
+
annealing_factor: 0.8
|
152 |
+
patient: 0
|
153 |
+
|
154 |
+
lr_annealing_wav2vec: !new:speechbrain.nnet.schedulers.NewBobScheduler
|
155 |
+
initial_value: !ref <lr_wav2vec>
|
156 |
+
improvement_threshold: 0.0025
|
157 |
+
annealing_factor: 0.9
|
158 |
+
patient: 0
|
159 |
+
|
160 |
+
checkpointer: !new:speechbrain.utils.checkpoints.Checkpointer
|
161 |
+
checkpoints_dir: !ref <save_folder>
|
162 |
+
recoverables:
|
163 |
+
wav2vec2: !ref <wav2vec2>
|
164 |
+
model: !ref <model>
|
165 |
+
scheduler_model: !ref <lr_annealing_model>
|
166 |
+
scheduler_wav2vec: !ref <lr_annealing_wav2vec>
|
167 |
+
counter: !ref <epoch_counter>
|
168 |
+
|
169 |
+
train_logger: !new:speechbrain.utils.train_logger.FileTrainLogger
|
170 |
+
save_file: !ref <train_log>
|
171 |
+
|
172 |
+
error_rate_computer: !name:speechbrain.utils.metric_stats.ErrorRateStats
|
173 |
+
|
174 |
+
cer_computer: !name:speechbrain.utils.metric_stats.ErrorRateStats
|
175 |
+
split_tokens: True
|
train_with_wavlm.py
ADDED
@@ -0,0 +1,399 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
import sys
|
3 |
+
import torch
|
4 |
+
import logging
|
5 |
+
import speechbrain as sb
|
6 |
+
from pathlib import Path
|
7 |
+
import os
|
8 |
+
import torchaudio
|
9 |
+
from hyperpyyaml import load_hyperpyyaml
|
10 |
+
from speechbrain.tokenizers.SentencePiece import SentencePiece
|
11 |
+
from speechbrain.utils.data_utils import undo_padding
|
12 |
+
from speechbrain.utils.distributed import run_on_main
|
13 |
+
|
14 |
+
"""Recipe for training a sequence-to-sequence ASR system with CommonVoice.
|
15 |
+
The system employs a wav2vec2 encoder and a CTC decoder.
|
16 |
+
Decoding is performed with greedy decoding (will be extended to beam search).
|
17 |
+
|
18 |
+
To run this recipe, do the following:
|
19 |
+
> python train_with_wav2vec2.py hparams/train_with_wav2vec2.yaml
|
20 |
+
|
21 |
+
With the default hyperparameters, the system employs a pretrained wav2vec2 encoder.
|
22 |
+
The wav2vec2 model is pretrained following the model given in the hprams file.
|
23 |
+
It may be dependent on the language.
|
24 |
+
|
25 |
+
The neural network is trained with CTC on sub-word units estimated with
|
26 |
+
Byte Pairwise Encoding (BPE).
|
27 |
+
|
28 |
+
The experiment file is flexible enough to support a large variety of
|
29 |
+
different systems. By properly changing the parameter files, you can try
|
30 |
+
different encoders, decoders, tokens (e.g, characters instead of BPE),
|
31 |
+
training languages (all CommonVoice languages), and many
|
32 |
+
other possible variations.
|
33 |
+
|
34 |
+
Authors
|
35 |
+
* Titouan Parcollet 2021
|
36 |
+
"""
|
37 |
+
|
38 |
+
logger = logging.getLogger(__name__)
|
39 |
+
|
40 |
+
|
41 |
+
# Define training procedure
|
42 |
+
class ASR(sb.core.Brain):
|
43 |
+
def compute_forward(self, batch, stage):
|
44 |
+
"""Forward computations from the waveform batches to the output probabilities."""
|
45 |
+
|
46 |
+
batch = batch.to(self.device)
|
47 |
+
wavs, wav_lens = batch.sig
|
48 |
+
wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device)
|
49 |
+
if stage == sb.Stage.TRAIN:
|
50 |
+
if hasattr(self.hparams, "augmentation"):
|
51 |
+
wavs = self.hparams.augmentation(wavs, wav_lens)
|
52 |
+
|
53 |
+
# Forward pass
|
54 |
+
feats = self.modules.wav2vec2(wavs, wav_lens)
|
55 |
+
x = self.modules.enc(feats)
|
56 |
+
logits = self.modules.ctc_lin(x)
|
57 |
+
p_ctc = self.hparams.log_softmax(logits)
|
58 |
+
|
59 |
+
return p_ctc, wav_lens
|
60 |
+
|
61 |
+
def compute_objectives(self, predictions, batch, stage):
|
62 |
+
"""Computes the loss (CTC) given predictions and targets."""
|
63 |
+
|
64 |
+
p_ctc, wav_lens = predictions
|
65 |
+
|
66 |
+
ids = batch.id
|
67 |
+
tokens, tokens_lens = batch.tokens
|
68 |
+
|
69 |
+
loss = self.hparams.ctc_cost(p_ctc, tokens, wav_lens, tokens_lens)
|
70 |
+
|
71 |
+
if stage != sb.Stage.TRAIN:
|
72 |
+
predicted_tokens = sb.decoders.ctc_greedy_decode(
|
73 |
+
p_ctc, wav_lens, blank_id=self.hparams.blank_index
|
74 |
+
)
|
75 |
+
# Decode token terms to words
|
76 |
+
if self.hparams.use_language_modelling:
|
77 |
+
predicted_words = []
|
78 |
+
for logs in p_ctc:
|
79 |
+
text = decoder.decode(logs.detach().cpu().numpy())
|
80 |
+
predicted_words.append(text.split(" "))
|
81 |
+
else:
|
82 |
+
predicted_words = [
|
83 |
+
"".join(self.tokenizer.decode_ndim(utt_seq)).split(" ")
|
84 |
+
for utt_seq in predicted_tokens
|
85 |
+
]
|
86 |
+
# Convert indices to words
|
87 |
+
target_words = [wrd.split(" ") for wrd in batch.wrd]
|
88 |
+
|
89 |
+
self.wer_metric.append(ids, predicted_words, target_words)
|
90 |
+
self.cer_metric.append(ids, predicted_words, target_words)
|
91 |
+
|
92 |
+
return loss
|
93 |
+
|
94 |
+
def fit_batch(self, batch):
|
95 |
+
"""Train the parameters given a single batch in input"""
|
96 |
+
should_step = self.step % self.grad_accumulation_factor == 0
|
97 |
+
# Managing automatic mixed precision
|
98 |
+
# TOFIX: CTC fine-tuning currently is unstable
|
99 |
+
# This is certainly due to CTC being done in fp16 instead of fp32
|
100 |
+
if self.auto_mix_prec:
|
101 |
+
with torch.cuda.amp.autocast():
|
102 |
+
with self.no_sync():
|
103 |
+
outputs = self.compute_forward(batch, sb.Stage.TRAIN)
|
104 |
+
loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN)
|
105 |
+
with self.no_sync(not should_step):
|
106 |
+
self.scaler.scale(
|
107 |
+
loss / self.grad_accumulation_factor
|
108 |
+
).backward()
|
109 |
+
if should_step:
|
110 |
+
|
111 |
+
if not self.hparams.wav2vec2.freeze:
|
112 |
+
self.scaler.unscale_(self.wav2vec_optimizer)
|
113 |
+
self.scaler.unscale_(self.model_optimizer)
|
114 |
+
if self.check_gradients(loss):
|
115 |
+
if not self.hparams.wav2vec2.freeze:
|
116 |
+
if self.optimizer_step >= self.hparams.warmup_steps:
|
117 |
+
self.scaler.step(self.wav2vec_optimizer)
|
118 |
+
self.scaler.step(self.model_optimizer)
|
119 |
+
self.scaler.update()
|
120 |
+
self.zero_grad()
|
121 |
+
self.optimizer_step += 1
|
122 |
+
else:
|
123 |
+
# This is mandatory because HF models have a weird behavior with DDP
|
124 |
+
# on the forward pass
|
125 |
+
with self.no_sync():
|
126 |
+
outputs = self.compute_forward(batch, sb.Stage.TRAIN)
|
127 |
+
|
128 |
+
loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN)
|
129 |
+
|
130 |
+
with self.no_sync(not should_step):
|
131 |
+
(loss / self.grad_accumulation_factor).backward()
|
132 |
+
if should_step:
|
133 |
+
if self.check_gradients(loss):
|
134 |
+
if not self.hparams.wav2vec2.freeze:
|
135 |
+
if self.optimizer_step >= self.hparams.warmup_steps:
|
136 |
+
self.wav2vec_optimizer.step()
|
137 |
+
self.model_optimizer.step()
|
138 |
+
self.zero_grad()
|
139 |
+
self.optimizer_step += 1
|
140 |
+
|
141 |
+
self.on_fit_batch_end(batch, outputs, loss, should_step)
|
142 |
+
return loss.detach().cpu()
|
143 |
+
|
144 |
+
def evaluate_batch(self, batch, stage):
|
145 |
+
"""Computations needed for validation/test batches"""
|
146 |
+
predictions = self.compute_forward(batch, stage=stage)
|
147 |
+
with torch.no_grad():
|
148 |
+
loss = self.compute_objectives(predictions, batch, stage=stage)
|
149 |
+
return loss.detach()
|
150 |
+
|
151 |
+
def on_stage_start(self, stage, epoch):
|
152 |
+
"""Gets called at the beginning of each epoch"""
|
153 |
+
if stage != sb.Stage.TRAIN:
|
154 |
+
self.cer_metric = self.hparams.cer_computer()
|
155 |
+
self.wer_metric = self.hparams.error_rate_computer()
|
156 |
+
|
157 |
+
def on_stage_end(self, stage, stage_loss, epoch):
|
158 |
+
"""Gets called at the end of an epoch."""
|
159 |
+
# Compute/store important stats
|
160 |
+
stage_stats = {"loss": stage_loss}
|
161 |
+
if stage == sb.Stage.TRAIN:
|
162 |
+
self.train_stats = stage_stats
|
163 |
+
else:
|
164 |
+
stage_stats["CER"] = self.cer_metric.summarize("error_rate")
|
165 |
+
stage_stats["WER"] = self.wer_metric.summarize("error_rate")
|
166 |
+
|
167 |
+
# Perform end-of-iteration things, like annealing, logging, etc.
|
168 |
+
if stage == sb.Stage.VALID:
|
169 |
+
old_lr_model, new_lr_model = self.hparams.lr_annealing_model(
|
170 |
+
stage_stats["loss"]
|
171 |
+
)
|
172 |
+
old_lr_wav2vec, new_lr_wav2vec = self.hparams.lr_annealing_wav2vec(
|
173 |
+
stage_stats["loss"]
|
174 |
+
)
|
175 |
+
sb.nnet.schedulers.update_learning_rate(
|
176 |
+
self.model_optimizer, new_lr_model
|
177 |
+
)
|
178 |
+
if not self.hparams.wav2vec2.freeze:
|
179 |
+
sb.nnet.schedulers.update_learning_rate(
|
180 |
+
self.wav2vec_optimizer, new_lr_wav2vec
|
181 |
+
)
|
182 |
+
self.hparams.train_logger.log_stats(
|
183 |
+
stats_meta={
|
184 |
+
"epoch": epoch,
|
185 |
+
"lr_model": old_lr_model,
|
186 |
+
"lr_wav2vec": old_lr_wav2vec,
|
187 |
+
},
|
188 |
+
train_stats=self.train_stats,
|
189 |
+
valid_stats=stage_stats,
|
190 |
+
)
|
191 |
+
self.checkpointer.save_and_keep_only(
|
192 |
+
meta={"WER": stage_stats["WER"]}, min_keys=["WER"],
|
193 |
+
)
|
194 |
+
elif stage == sb.Stage.TEST:
|
195 |
+
self.hparams.train_logger.log_stats(
|
196 |
+
stats_meta={"Epoch loaded": self.hparams.epoch_counter.current},
|
197 |
+
test_stats=stage_stats,
|
198 |
+
)
|
199 |
+
with open(self.hparams.wer_file, "w") as w:
|
200 |
+
self.wer_metric.write_stats(w)
|
201 |
+
|
202 |
+
def init_optimizers(self):
|
203 |
+
"Initializes the wav2vec2 optimizer and model optimizer"
|
204 |
+
|
205 |
+
# If the wav2vec encoder is unfrozen, we create the optimizer
|
206 |
+
if not self.hparams.wav2vec2.freeze:
|
207 |
+
self.wav2vec_optimizer = self.hparams.wav2vec_opt_class(
|
208 |
+
self.modules.wav2vec2.parameters()
|
209 |
+
)
|
210 |
+
if self.checkpointer is not None:
|
211 |
+
self.checkpointer.add_recoverable(
|
212 |
+
"wav2vec_opt", self.wav2vec_optimizer
|
213 |
+
)
|
214 |
+
|
215 |
+
self.model_optimizer = self.hparams.model_opt_class(
|
216 |
+
self.hparams.model.parameters()
|
217 |
+
)
|
218 |
+
|
219 |
+
if self.checkpointer is not None:
|
220 |
+
self.checkpointer.add_recoverable("modelopt", self.model_optimizer)
|
221 |
+
|
222 |
+
def zero_grad(self, set_to_none=False):
|
223 |
+
if not self.hparams.wav2vec2.freeze:
|
224 |
+
self.wav2vec_optimizer.zero_grad(set_to_none)
|
225 |
+
self.model_optimizer.zero_grad(set_to_none)
|
226 |
+
|
227 |
+
|
228 |
+
# Define custom data procedure
|
229 |
+
def dataio_prepare(hparams):
|
230 |
+
"""This function prepares the datasets to be used in the brain class.
|
231 |
+
It also defines the data processing pipeline through user-defined functions."""
|
232 |
+
|
233 |
+
# 1. Define datasets
|
234 |
+
data_folder = hparams["data_folder"]
|
235 |
+
|
236 |
+
train_data = sb.dataio.dataset.DynamicItemDataset.from_csv(
|
237 |
+
csv_path=hparams["train_csv"], replacements={"data_root": data_folder},
|
238 |
+
)
|
239 |
+
|
240 |
+
if hparams["sorting"] == "ascending":
|
241 |
+
# we sort training data to speed up training and get better results.
|
242 |
+
train_data = train_data.filtered_sorted(
|
243 |
+
sort_key="duration",
|
244 |
+
key_max_value={"duration": hparams["avoid_if_longer_than"]},
|
245 |
+
)
|
246 |
+
# when sorting do not shuffle in dataloader ! otherwise is pointless
|
247 |
+
hparams["dataloader_options"]["shuffle"] = False
|
248 |
+
|
249 |
+
elif hparams["sorting"] == "descending":
|
250 |
+
train_data = train_data.filtered_sorted(
|
251 |
+
sort_key="duration",
|
252 |
+
reverse=True,
|
253 |
+
key_max_value={"duration": hparams["avoid_if_longer_than"]},
|
254 |
+
)
|
255 |
+
# when sorting do not shuffle in dataloader ! otherwise is pointless
|
256 |
+
hparams["dataloader_options"]["shuffle"] = False
|
257 |
+
|
258 |
+
elif hparams["sorting"] == "random":
|
259 |
+
pass
|
260 |
+
|
261 |
+
else:
|
262 |
+
raise NotImplementedError(
|
263 |
+
"sorting must be random, ascending or descending"
|
264 |
+
)
|
265 |
+
|
266 |
+
valid_data = sb.dataio.dataset.DynamicItemDataset.from_csv(
|
267 |
+
csv_path=hparams["valid_csv"], replacements={"data_root": data_folder},
|
268 |
+
)
|
269 |
+
# We also sort the validation data so it is faster to validate
|
270 |
+
valid_data = valid_data.filtered_sorted(sort_key="duration")
|
271 |
+
test_datasets = {}
|
272 |
+
for csv_file in hparams["test_csv"]:
|
273 |
+
name = Path(csv_file).stem
|
274 |
+
test_datasets[name] = sb.dataio.dataset.DynamicItemDataset.from_csv(
|
275 |
+
csv_path=csv_file, replacements={"data_root": data_folder}
|
276 |
+
)
|
277 |
+
test_datasets[name] = test_datasets[name].filtered_sorted(
|
278 |
+
sort_key="duration"
|
279 |
+
)
|
280 |
+
|
281 |
+
datasets = [train_data, valid_data] + [i for k, i in test_datasets.items()]
|
282 |
+
|
283 |
+
|
284 |
+
# 2. Define audio pipeline:
|
285 |
+
@sb.utils.data_pipeline.takes("wav")
|
286 |
+
@sb.utils.data_pipeline.provides("sig")
|
287 |
+
def audio_pipeline(wav):
|
288 |
+
info = torchaudio.info(wav)
|
289 |
+
sig = sb.dataio.dataio.read_audio(wav)
|
290 |
+
resampled = torchaudio.transforms.Resample(
|
291 |
+
info.sample_rate, hparams["sample_rate"],
|
292 |
+
)(sig)
|
293 |
+
return resampled
|
294 |
+
|
295 |
+
sb.dataio.dataset.add_dynamic_item(datasets, audio_pipeline)
|
296 |
+
label_encoder = sb.dataio.encoder.CTCTextEncoder()
|
297 |
+
|
298 |
+
# 3. Define text pipeline:
|
299 |
+
@sb.utils.data_pipeline.takes("wrd")
|
300 |
+
@sb.utils.data_pipeline.provides(
|
301 |
+
"wrd", "char_list", "tokens_list", "tokens"
|
302 |
+
)
|
303 |
+
def text_pipeline(wrd):
|
304 |
+
yield wrd
|
305 |
+
char_list = list(wrd)
|
306 |
+
yield char_list
|
307 |
+
tokens_list = label_encoder.encode_sequence(char_list)
|
308 |
+
yield tokens_list
|
309 |
+
tokens = torch.LongTensor(tokens_list)
|
310 |
+
yield tokens
|
311 |
+
|
312 |
+
sb.dataio.dataset.add_dynamic_item(datasets, text_pipeline)
|
313 |
+
lab_enc_file = os.path.join(hparams["save_folder"], "label_encoder.txt")
|
314 |
+
special_labels = {
|
315 |
+
"blank_label": hparams["blank_index"],
|
316 |
+
"unk_label": hparams["unk_index"]
|
317 |
+
}
|
318 |
+
label_encoder.load_or_create(
|
319 |
+
path=lab_enc_file,
|
320 |
+
from_didatasets=[train_data],
|
321 |
+
output_key="char_list",
|
322 |
+
special_labels=special_labels,
|
323 |
+
sequence_input=True,
|
324 |
+
)
|
325 |
+
|
326 |
+
# 4. Set output:
|
327 |
+
sb.dataio.dataset.set_output_keys(
|
328 |
+
datasets, ["id", "sig", "wrd", "char_list", "tokens"],
|
329 |
+
)
|
330 |
+
return train_data, valid_data,test_datasets, label_encoder
|
331 |
+
|
332 |
+
|
333 |
+
if __name__ == "__main__":
|
334 |
+
|
335 |
+
# Load hyperparameters file with command-line overrides
|
336 |
+
hparams_file, run_opts, overrides = sb.parse_arguments(sys.argv[1:])
|
337 |
+
with open(hparams_file) as fin:
|
338 |
+
hparams = load_hyperpyyaml(fin, overrides)
|
339 |
+
|
340 |
+
# If --distributed_launch then
|
341 |
+
# create ddp_group with the right communication protocol
|
342 |
+
sb.utils.distributed.ddp_init_group(run_opts)
|
343 |
+
|
344 |
+
|
345 |
+
# Create experiment directory
|
346 |
+
sb.create_experiment_directory(
|
347 |
+
experiment_directory=hparams["output_folder"],
|
348 |
+
hyperparams_to_save=hparams_file,
|
349 |
+
overrides=overrides,
|
350 |
+
)
|
351 |
+
|
352 |
+
# Due to DDP, we do the preparation ONLY on the main python process
|
353 |
+
# Defining tokenizer and loading it
|
354 |
+
# Create the datasets objects as well as tokenization and encoding :-D
|
355 |
+
train_data, valid_data, test_datasets, label_encoder = dataio_prepare(hparams)
|
356 |
+
if hparams["use_language_modelling"]:
|
357 |
+
print("using langauge_modeeling")
|
358 |
+
from pyctcdecode import build_ctcdecoder
|
359 |
+
ind2lab = label_encoder.ind2lab
|
360 |
+
print(ind2lab)
|
361 |
+
labels = [ind2lab[x] for x in range(len(ind2lab))]
|
362 |
+
labels = [""] + labels[1:-1] + ["1"]
|
363 |
+
# Replace the <blank> token with a blank character, needed for PyCTCdecode
|
364 |
+
print(labels)
|
365 |
+
decoder = build_ctcdecoder(
|
366 |
+
labels,
|
367 |
+
kenlm_model_path=hparams["ngram_lm_path"], # .arpa or .bin
|
368 |
+
alpha=0.5, # Default by KenLM
|
369 |
+
beta=1.0, # Default by KenLM
|
370 |
+
)
|
371 |
+
# Trainer initialization
|
372 |
+
asr_brain = ASR(
|
373 |
+
modules=hparams["modules"],
|
374 |
+
hparams=hparams,
|
375 |
+
run_opts=run_opts,
|
376 |
+
checkpointer=hparams["checkpointer"],
|
377 |
+
)
|
378 |
+
|
379 |
+
# Adding objects to trainer.
|
380 |
+
asr_brain.tokenizer = label_encoder
|
381 |
+
|
382 |
+
# Training
|
383 |
+
asr_brain.fit(
|
384 |
+
asr_brain.hparams.epoch_counter,
|
385 |
+
train_data,
|
386 |
+
valid_data,
|
387 |
+
train_loader_kwargs=hparams["dataloader_options"],
|
388 |
+
valid_loader_kwargs=hparams["test_dataloader_options"],
|
389 |
+
)
|
390 |
+
|
391 |
+
# Test
|
392 |
+
for k in test_datasets.keys(): # keys are test_clean, test_other etc
|
393 |
+
asr_brain.hparams.wer_file = os.path.join(
|
394 |
+
hparams["output_folder"], "wer_{}.txt".format(k)
|
395 |
+
)
|
396 |
+
asr_brain.evaluate(
|
397 |
+
test_datasets[k], test_loader_kwargs=hparams["test_dataloader_options"]
|
398 |
+
)
|
399 |
+
|