ybelkada commited on
Commit
abbaae4
1 Parent(s): 8fccca1

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +139 -0
README.md ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ languages:
3
+ - en
4
+ license: bsd-3-clause
5
+ ---
6
+
7
+ # BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation
8
+
9
+ Model card for image captioning pretrained on COCO dataset - base architecture (with ViT base backbone).
10
+
11
+ | ![BLIP.gif](https://s3.amazonaws.com/moonup/production/uploads/1670928184033-62441d1d9fdefb55a0b7d12c.gif) |
12
+ |:--:|
13
+ | <b> Pull figure from BLIP official repo | Image source: https://github.com/salesforce/BLIP </b>|
14
+
15
+ ## TL;DR
16
+
17
+ Authors from the [paper](https://arxiv.org/abs/2201.12086) write in the abstract:
18
+
19
+ *Vision-Language Pre-training (VLP) has advanced the performance for many vision-language tasks. However, most existing pre-trained models only excel in either understanding-based tasks or generation-based tasks. Furthermore, performance improvement has been largely achieved by scaling up the dataset with noisy image-text pairs collected from the web, which is a suboptimal source of supervision. In this paper, we propose BLIP, a new VLP framework which transfers flexibly to both vision-language understanding and generation tasks. BLIP effectively utilizes the noisy web data by bootstrapping the captions, where a captioner generates synthetic captions and a filter removes the noisy ones. We achieve state-of-the-art results on a wide range of vision-language tasks, such as image-text retrieval (+2.7% in average recall@1), image captioning (+2.8% in CIDEr), and VQA (+1.6% in VQA score). BLIP also demonstrates strong generalization ability when directly transferred to videolanguage tasks in a zero-shot manner. Code, models, and datasets are released.*
20
+
21
+ ## Usage
22
+
23
+ You can use this model for conditional and un-conditional image captioning
24
+
25
+ ### Using the Pytorch model
26
+
27
+ #### Running the model on CPU
28
+
29
+ <details>
30
+ <summary> Click to expand </summary>
31
+
32
+ ```python
33
+
34
+ from transformers import BlipProcessor, BlipForImageCaptioning
35
+
36
+ processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
37
+ model = BlipForConditionalGeneration.from_pretrained("Salesfoce/blip-image-captioning-base")
38
+
39
+ img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
40
+ raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
41
+
42
+ # conditional image captioning
43
+ text = "a photography of"
44
+ inputs = processor(raw_image, text, return_tensors="pt")
45
+
46
+ out = model.generate(**inputs)
47
+ print(processor.decode(out[0], skip_special_tokens=True)
48
+
49
+ # unconditional image captioning
50
+ inputs = processor(raw_image, return_tensors="pt")
51
+
52
+ out = model.generate(**inputs)
53
+ print(processor.decode(out[0], skip_special_tokens=True)
54
+ ```
55
+ </details>
56
+
57
+ #### Running the model on GPU
58
+
59
+ ##### In full precision
60
+
61
+ <details>
62
+ <summary> Click to expand </summary>
63
+
64
+ ```python
65
+
66
+ from transformers import BlipProcessor, BlipForImageCaptioning
67
+
68
+ processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
69
+ model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to("cuda")
70
+
71
+ img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
72
+ raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
73
+
74
+ # conditional image captioning
75
+ text = "a photography of"
76
+ inputs = processor(raw_image, text, return_tensors="pt").to("cuda")
77
+
78
+ out = model.generate(**inputs)
79
+ print(processor.decode(out[0], skip_special_tokens=True)
80
+
81
+ # unconditional image captioning
82
+ inputs = processor(raw_image, return_tensors="pt").to("cuda")
83
+
84
+ out = model.generate(**inputs)
85
+ print(processor.decode(out[0], skip_special_tokens=True)
86
+ ```
87
+ </details>
88
+
89
+ ##### In half precision (`float16`)
90
+
91
+ <details>
92
+ <summary> Click to expand </summary>
93
+
94
+ ```python
95
+ import torch
96
+ from transformers import BlipProcessor, BlipForImageCaptioning
97
+
98
+ processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
99
+ model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base", torch_dtype=torch.float16).to("cuda")
100
+
101
+ img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
102
+ raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
103
+
104
+ # conditional image captioning
105
+ text = "a photography of"
106
+ inputs = processor(raw_image, text, return_tensors="pt").to("cuda", torch.float16)
107
+
108
+ out = model.generate(**inputs)
109
+ print(processor.decode(out[0], skip_special_tokens=True)
110
+
111
+ # unconditional image captioning
112
+ inputs = processor(raw_image, return_tensors="pt").to("cuda", torch.float16)
113
+
114
+ out = model.generate(**inputs)
115
+ print(processor.decode(out[0], skip_special_tokens=True)
116
+ ```
117
+ </details>
118
+
119
+ ## BibTex and citation info
120
+
121
+ ```
122
+ @misc{https://doi.org/10.48550/arxiv.2201.12086,
123
+ doi = {10.48550/ARXIV.2201.12086},
124
+
125
+ url = {https://arxiv.org/abs/2201.12086},
126
+
127
+ author = {Li, Junnan and Li, Dongxu and Xiong, Caiming and Hoi, Steven},
128
+
129
+ keywords = {Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and information sciences, FOS: Computer and information sciences},
130
+
131
+ title = {BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation},
132
+
133
+ publisher = {arXiv},
134
+
135
+ year = {2022},
136
+
137
+ copyright = {Creative Commons Attribution 4.0 International}
138
+ }
139
+ ```