Update README.md (#1)
Browse files- Update README.md (3af156a76220a22440ec6b0a3e80a91c64a97a0a)
Co-authored-by: Younes Belkada <[email protected]>
README.md
CHANGED
@@ -43,4 +43,107 @@ fine-tuned versions on a task that interests you.
|
|
43 |
|
44 |
### How to use
|
45 |
|
46 |
-
For code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/main/en/model_doc/blip-2#transformers.Blip2ForConditionalGeneration.forward.example)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
### How to use
|
45 |
|
46 |
+
For code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/main/en/model_doc/blip-2#transformers.Blip2ForConditionalGeneration.forward.example), or refer to the snippets below depending on your usecase:
|
47 |
+
|
48 |
+
#### Running the model on CPU
|
49 |
+
|
50 |
+
<details>
|
51 |
+
<summary> Click to expand </summary>
|
52 |
+
|
53 |
+
```python
|
54 |
+
import requests
|
55 |
+
from PIL import Image
|
56 |
+
from transformers import BlipProcessor, Blip2ForConditionalGeneration
|
57 |
+
|
58 |
+
processor = BlipProcessor.from_pretrained("Salesforce/blip2-flan-t5-xxl")
|
59 |
+
model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-flan-t5-xxl")
|
60 |
+
|
61 |
+
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
|
62 |
+
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
|
63 |
+
|
64 |
+
question = "how many dogs are in the picture?"
|
65 |
+
inputs = processor(raw_image, question, return_tensors="pt")
|
66 |
+
|
67 |
+
out = model.generate(**inputs)
|
68 |
+
print(processor.decode(out[0], skip_special_tokens=True))
|
69 |
+
```
|
70 |
+
</details>
|
71 |
+
|
72 |
+
#### Running the model on GPU
|
73 |
+
|
74 |
+
##### In full precision
|
75 |
+
|
76 |
+
<details>
|
77 |
+
<summary> Click to expand </summary>
|
78 |
+
|
79 |
+
```python
|
80 |
+
# pip install accelerate
|
81 |
+
import requests
|
82 |
+
from PIL import Image
|
83 |
+
from transformers import Blip2Processor, Blip2ForConditionalGeneration
|
84 |
+
|
85 |
+
processor = Blip2Processor.from_pretrained("Salesforce/blip2-flan-t5-xxl")
|
86 |
+
model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-flan-t5-xxl", device_map="auto")
|
87 |
+
|
88 |
+
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
|
89 |
+
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
|
90 |
+
|
91 |
+
question = "how many dogs are in the picture?"
|
92 |
+
inputs = processor(raw_image, question, return_tensors="pt").to("cuda")
|
93 |
+
|
94 |
+
out = model.generate(**inputs)
|
95 |
+
print(processor.decode(out[0], skip_special_tokens=True))
|
96 |
+
```
|
97 |
+
</details>
|
98 |
+
|
99 |
+
##### In half precision (`float16`)
|
100 |
+
|
101 |
+
<details>
|
102 |
+
<summary> Click to expand </summary>
|
103 |
+
|
104 |
+
```python
|
105 |
+
# pip install accelerate
|
106 |
+
import torch
|
107 |
+
import requests
|
108 |
+
from PIL import Image
|
109 |
+
from transformers import Blip2Processor, Blip2ForConditionalGeneration
|
110 |
+
|
111 |
+
processor = Bli2pProcessor.from_pretrained("Salesforce/blip2-flan-t5-xxl")
|
112 |
+
model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-flan-t5-xxl", torch_dtype=torch.float16, device_map="auto")
|
113 |
+
|
114 |
+
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
|
115 |
+
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
|
116 |
+
|
117 |
+
question = "how many dogs are in the picture?"
|
118 |
+
inputs = processor(raw_image, question, return_tensors="pt").to("cuda", torch.float16)
|
119 |
+
|
120 |
+
out = model.generate(**inputs)
|
121 |
+
print(processor.decode(out[0], skip_special_tokens=True))
|
122 |
+
```
|
123 |
+
</details>
|
124 |
+
|
125 |
+
##### In 8-bit precision (`int8`)
|
126 |
+
|
127 |
+
<details>
|
128 |
+
<summary> Click to expand </summary>
|
129 |
+
|
130 |
+
```python
|
131 |
+
# pip install accelerate bitsandbytes
|
132 |
+
import torch
|
133 |
+
import requests
|
134 |
+
from PIL import Image
|
135 |
+
from transformers import Blip2Processor, Blip2ForConditionalGeneration
|
136 |
+
|
137 |
+
processor = Bli2pProcessor.from_pretrained("Salesforce/blip2-flan-t5-xxl")
|
138 |
+
model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-flan-t5-xxl", load_in_8bit=True, device_map="auto")
|
139 |
+
|
140 |
+
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
|
141 |
+
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
|
142 |
+
|
143 |
+
question = "how many dogs are in the picture?"
|
144 |
+
inputs = processor(raw_image, question, return_tensors="pt").to("cuda", torch.float16)
|
145 |
+
|
146 |
+
out = model.generate(**inputs)
|
147 |
+
print(processor.decode(out[0], skip_special_tokens=True))
|
148 |
+
```
|
149 |
+
</details>
|