# coding=utf-8 | |
# Copyright 2023 Salesforce authors, The EleutherAI, and HuggingFace Teams. All rights reserved. | |
""" PyTorch CodeT5+ matching models. | |
The implementation is based on transformers.models.t5.modeling_t5 by adding a projection layer on T5EncoderModel | |
""" | |
from typing import Optional, Tuple, Union | |
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
from transformers import T5ForConditionalGeneration | |
from transformers.modeling_outputs import ( | |
BaseModelOutput, | |
) | |
from .configuration_codet5p_bimodal import CodeT5pBimodalConfig | |
class CodeT5pBimodalModel(T5ForConditionalGeneration): | |
config_class = CodeT5pBimodalConfig | |
authorized_missing_keys = [ | |
r"encoder.embed_tokens.weight", | |
] | |
def __init__(self, config: CodeT5pBimodalConfig): | |
super().__init__(config) | |
self.proj = nn.Linear(config.d_model, config.embed_dim) | |
self.itm_head = nn.Linear(config.d_model, 2) | |