File size: 23,912 Bytes
59699eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
{
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {},
      "source": [
        "# xLAM Model Function-Calling Capabilities Demo\n",
        "\n",
        "This notebook demonstrates the function-calling capabilities of the xLAM model. The xLAM model is designed to handle various tasks by generating appropriate function calls based on the given query and available tools.\n",
        "\n",
        "We will cover the following steps:\n",
        "1. Setup and Initialization\n",
        "2. Example Usage with Provided Demo APIs\n",
        "3. Executing Real-Time Weather API Calls\n",
        "\n",
        "Let's get started!"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {},
      "source": [
        "## 1. Setup and Initialization\n",
        "\n",
        "First, we need to set up the environment and initialize the xLAMHandler class. Ensure you have all the necessary dependencies installed:\n",
        "- `vllm`\n",
        "- `jinja2`\n",
        "- `requests`"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {},
      "source": [
        "Next, we'll import the necessary modules and define the xLAMHandler class and utility functions. You can find the script provided earlier in the cell below."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 1,
      "metadata": {},
      "outputs": [
        {
          "name": "stderr",
          "output_type": "stream",
          "text": [
            "/export/home/conda/envs/rl/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
            "  from .autonotebook import tqdm as notebook_tqdm\n",
            "2024-07-18 07:25:11,294\tINFO util.py:154 -- Missing packages: ['ipywidgets']. Run `pip install -U ipywidgets`, then restart the notebook server for rich notebook output.\n"
          ]
        },
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "INFO 07-18 07:25:13 llm_engine.py:161] Initializing an LLM engine (v0.5.0) with config: model='Salesforce/xLAM-1b-fc-r', speculative_config=None, tokenizer='Salesforce/xLAM-1b-fc-r', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, rope_scaling=None, rope_theta=None, tokenizer_revision=None, trust_remote_code=False, dtype=torch.bfloat16, max_seq_len=65536, download_dir=None, load_format=LoadFormat.AUTO, tensor_parallel_size=1, disable_custom_all_reduce=False, quantization=None, enforce_eager=False, kv_cache_dtype=auto, quantization_param_path=None, device_config=cuda, decoding_config=DecodingConfig(guided_decoding_backend='outlines'), seed=0, served_model_name=Salesforce/xLAM-1b-fc-r)\n"
          ]
        },
        {
          "name": "stderr",
          "output_type": "stream",
          "text": [
            "Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.\n"
          ]
        },
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "INFO 07-18 07:25:24 weight_utils.py:218] Using model weights format ['*.safetensors']\n",
            "INFO 07-18 07:25:24 weight_utils.py:261] No model.safetensors.index.json found in remote.\n",
            "INFO 07-18 07:25:25 model_runner.py:159] Loading model weights took 2.5583 GB\n",
            "INFO 07-18 07:25:31 gpu_executor.py:83] # GPU blocks: 10075, # CPU blocks: 1365\n",
            "INFO 07-18 07:25:40 model_runner.py:878] Capturing the model for CUDA graphs. This may lead to unexpected consequences if the model is not static. To run the model in eager mode, set 'enforce_eager=True' or use '--enforce-eager' in the CLI.\n",
            "INFO 07-18 07:25:40 model_runner.py:882] CUDA graphs can take additional 1~3 GiB memory per GPU. If you are running out of memory, consider decreasing `gpu_memory_utilization` or enforcing eager mode. You can also reduce the `max_num_seqs` as needed to decrease memory usage.\n",
            "INFO 07-18 07:26:02 model_runner.py:954] Graph capturing finished in 22 secs.\n"
          ]
        }
      ],
      "source": [
        "import json\n",
        "import time\n",
        "from typing import List, Dict\n",
        "\n",
        "from vllm import LLM, SamplingParams\n",
        "from jinja2 import Template\n",
        "\n",
        "\n",
        "TASK_INSTRUCTION = \"\"\"\n",
        "You are an expert in composing functions. You are given a question and a set of possible functions. \n",
        "Based on the question, you will need to make one or more function/tool calls to achieve the purpose. \n",
        "If none of the functions can be used, point it out and refuse to answer. \n",
        "If the given question lacks the parameters required by the function, also point it out.\n",
        "\"\"\".strip()\n",
        "\n",
        "FORMAT_INSTRUCTION = \"\"\"\n",
        "The output MUST strictly adhere to the following JSON format, and NO other text MUST be included.\n",
        "The example format is as follows. Please make sure the parameter type is correct. If no function call is needed, please make tool_calls an empty list '[]'\n",
        "```\n",
        "{\n",
        "  \"tool_calls\": [\n",
        "    {\"name\": \"func_name1\", \"arguments\": {\"argument1\": \"value1\", \"argument2\": \"value2\"}},\n",
        "    ... (more tool calls as required)\n",
        "  ]\n",
        "}\n",
        "```\n",
        "\"\"\".strip()\n",
        "\n",
        "class XLAMHandler:\n",
        "    def __init__(self, \n",
        "                 model: str, \n",
        "                 temperature: float = 0.3, \n",
        "                 top_p: float = 1, \n",
        "                 max_tokens: int = 512,\n",
        "                 tensor_parallel_size: int = 1,\n",
        "                 dtype: str = \"bfloat16\"):\n",
        "        \n",
        "        # Initialize LLM with GPU specifications\n",
        "        self.llm = LLM(model=model,\n",
        "                       tensor_parallel_size=tensor_parallel_size,\n",
        "                       dtype=dtype)\n",
        "        \n",
        "        self.sampling_params = SamplingParams(\n",
        "            temperature=temperature,\n",
        "            top_p=top_p,\n",
        "            max_tokens=max_tokens\n",
        "        )\n",
        "        self.chat_template = self.llm.get_tokenizer().chat_template\n",
        "    \n",
        "    @staticmethod\n",
        "    def apply_chat_template(template, messages):\n",
        "        jinja_template = Template(template)\n",
        "        return jinja_template.render(messages=messages)\n",
        "\n",
        "    def process_query(self, query: str, tools: list, task_instruction: str, format_instruction: str):\n",
        "        # Convert tools to XLAM format\n",
        "        xlam_tools = self.convert_to_xlam_tool(tools)\n",
        "\n",
        "        # Build the input prompt\n",
        "        prompt = self.build_prompt(query, xlam_tools, task_instruction, format_instruction)\n",
        "\n",
        "        messages = [\n",
        "            {\"role\": \"user\", \"content\": prompt}\n",
        "        ]\n",
        "        formatted_prompt = self.apply_chat_template(self.chat_template, messages)\n",
        "\n",
        "        # Make inference\n",
        "        start_time = time.time()\n",
        "        outputs = self.llm.generate([formatted_prompt], self.sampling_params)\n",
        "        latency = time.time() - start_time\n",
        "\n",
        "        # Calculate tokens per second\n",
        "        tokens_generated = sum(len(output.text.split()) for output in outputs[0].outputs)\n",
        "        tokens_per_second = tokens_generated / latency\n",
        "\n",
        "        # Parse response\n",
        "        result = outputs[0].outputs[0].text\n",
        "        parsed_result, success, _ = self.parse_response(result)\n",
        "\n",
        "        # Prepare metadata\n",
        "        metadata = {\n",
        "            \"latency\": latency,\n",
        "            \"tokens_per_second\": tokens_per_second,\n",
        "            \"success\": success,\n",
        "        }\n",
        "\n",
        "        return parsed_result, metadata\n",
        "\n",
        "    def convert_to_xlam_tool(self, tools):\n",
        "        if isinstance(tools, dict):\n",
        "            return {\n",
        "                \"name\": tools[\"name\"],\n",
        "                \"description\": tools[\"description\"],\n",
        "                \"parameters\": {k: v for k, v in tools[\"parameters\"].get(\"properties\", {}).items()}\n",
        "            }\n",
        "        elif isinstance(tools, list):\n",
        "            return [self.convert_to_xlam_tool(tool) for tool in tools]\n",
        "        else:\n",
        "            return tools\n",
        "\n",
        "    def build_prompt(self, query, tools, task_instruction=TASK_INSTRUCTION, format_instruction=FORMAT_INSTRUCTION):\n",
        "        prompt = f\"[BEGIN OF TASK INSTRUCTION]\\n{task_instruction}\\n[END OF TASK INSTRUCTION]\\n\\n\"\n",
        "        prompt += f\"[BEGIN OF AVAILABLE TOOLS]\\n{json.dumps(tools)}\\n[END OF AVAILABLE TOOLS]\\n\\n\"\n",
        "        prompt += f\"[BEGIN OF FORMAT INSTRUCTION]\\n{format_instruction}\\n[END OF FORMAT INSTRUCTION]\\n\\n\"\n",
        "        prompt += f\"[BEGIN OF QUERY]\\n{query}\\n[END OF QUERY]\\n\\n\"\n",
        "        return prompt\n",
        "\n",
        "    def parse_response(self, response):\n",
        "        try:\n",
        "            data = json.loads(response)\n",
        "            tool_calls = data.get('tool_calls', []) if isinstance(data, dict) else data\n",
        "            result = [\n",
        "                {tool_call['name']: tool_call['arguments']}\n",
        "                for tool_call in tool_calls if isinstance(tool_call, dict)\n",
        "            ]\n",
        "            return result, True, []\n",
        "        except json.JSONDecodeError:\n",
        "            return [], False, [\"Failed to parse JSON response\"]\n",
        "\n",
        "handler = XLAMHandler(model=\"Salesforce/xLAM-1b-fc-r\")"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {},
      "source": [
        "## 2. Example Usage with Demo APIs\n",
        "\n",
        "In this section, we'll demonstrate how to use the xLAMHandler class with some example APIs. We'll start by defining several API tools and some test queries."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 3,
      "metadata": {},
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Query: What's the weather like in New York in Fahrenheit?\n"
          ]
        },
        {
          "name": "stderr",
          "output_type": "stream",
          "text": [
            "Processed prompts: 100%|██████████| 1/1 [00:00<00:00,  4.51it/s, Generation Speed: 176.89 toks/s]\n"
          ]
        },
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Result: [\n",
            "  {\n",
            "    \"get_weather\": {\n",
            "      \"location\": \"New York\",\n",
            "      \"unit\": \"fahrenheit\"\n",
            "    }\n",
            "  }\n",
            "]\n",
            "Latency:  0.22673869132995605\n",
            "Speed:  39.69326958363258\n",
            "--------------------------------------------------\n",
            "Query: What is the stock price of CRM?\n"
          ]
        },
        {
          "name": "stderr",
          "output_type": "stream",
          "text": [
            "Processed prompts: 100%|██████████| 1/1 [00:00<00:00,  5.86it/s, Generation Speed: 182.37 toks/s]\n"
          ]
        },
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Result: [\n",
            "  {\n",
            "    \"get_stock_price\": {\n",
            "      \"symbol\": \"CRM\"\n",
            "    }\n",
            "  }\n",
            "]\n",
            "Latency:  0.17523670196533203\n",
            "Speed:  34.23940266341585\n",
            "--------------------------------------------------\n",
            "Query: Tell me the temperature in London in Celsius\n"
          ]
        },
        {
          "name": "stderr",
          "output_type": "stream",
          "text": [
            "Processed prompts: 100%|██████████| 1/1 [00:00<00:00,  5.08it/s, Generation Speed: 183.60 toks/s]"
          ]
        },
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Result: [\n",
            "  {\n",
            "    \"get_weather\": {\n",
            "      \"location\": \"London\",\n",
            "      \"unit\": \"celsius\"\n",
            "    }\n",
            "  }\n",
            "]\n",
            "Latency:  0.20116281509399414\n",
            "Speed:  39.768781304148916\n",
            "--------------------------------------------------\n"
          ]
        },
        {
          "name": "stderr",
          "output_type": "stream",
          "text": [
            "\n"
          ]
        }
      ],
      "source": [
        "get_weather_api = {\n",
        "    \"name\": \"get_weather\",\n",
        "    \"description\": \"Get the current weather for a location\",\n",
        "    \"parameters\": {\n",
        "        \"type\": \"object\",\n",
        "        \"properties\": {\n",
        "            \"location\": {\n",
        "                \"type\": \"string\",\n",
        "                \"description\": \"The city and state, e.g. San Francisco, New York\"\n",
        "            },\n",
        "            \"unit\": {\n",
        "                \"type\": \"string\",\n",
        "                \"enum\": [\"celsius\", \"fahrenheit\"],\n",
        "                \"description\": \"The unit of temperature to return\"\n",
        "            }\n",
        "        },\n",
        "        \"required\": [\"location\"]\n",
        "    }\n",
        "}\n",
        "\n",
        "search_api = {\n",
        "    \"name\": \"search\",\n",
        "    \"description\": \"Search for information on the internet\",\n",
        "    \"parameters\": {\n",
        "        \"type\": \"object\",\n",
        "        \"properties\": {\n",
        "            \"query\": {\n",
        "                \"type\": \"string\",\n",
        "                \"description\": \"The search query, e.g. 'latest news on AI'\"\n",
        "            }\n",
        "        },\n",
        "        \"required\": [\"query\"]\n",
        "    }\n",
        "}\n",
        "\n",
        "get_stock_price_api = {\n",
        "    \"name\": \"get_stock_price\",\n",
        "    \"description\": \"Get the current stock price for a company\",\n",
        "    \"parameters\": {\n",
        "        \"type\": \"object\",\n",
        "        \"properties\": {\n",
        "            \"symbol\": {\n",
        "                \"type\": \"string\",\n",
        "                \"description\": \"The stock symbol, e.g. 'AAPL' for Apple Inc.\"\n",
        "            }\n",
        "        },\n",
        "        \"required\": [\"symbol\"]\n",
        "    }\n",
        "}\n",
        "\n",
        "get_news_api = {\n",
        "    \"name\": \"get_news\",\n",
        "    \"description\": \"Get the latest news headlines\",\n",
        "    \"parameters\": {\n",
        "        \"type\": \"object\",\n",
        "        \"properties\": {\n",
        "            \"topic\": {\n",
        "                \"type\": \"string\",\n",
        "                \"description\": \"The news topic, e.g. 'technology', 'sports'\"\n",
        "            }\n",
        "        },\n",
        "        \"required\": [\"topic\"]\n",
        "    }\n",
        "}\n",
        "\n",
        "all_apis = [get_weather_api, search_api, get_stock_price_api, get_news_api]\n",
        "\n",
        "test_queries = [\n",
        "    \"What's the weather like in New York in Fahrenheit?\",\n",
        "    \"What is the stock price of CRM?\",\n",
        "    \"Tell me the temperature in London in Celsius\",\n",
        "]\n",
        "\n",
        "for query in test_queries:\n",
        "    print(f\"Query: {query}\")\n",
        "    result, metadata = handler.process_query(query, all_apis, TASK_INSTRUCTION, FORMAT_INSTRUCTION)\n",
        "    print(f\"Result: {json.dumps(result, indent=2)}\")\n",
        "    print(\"Latency: \", metadata[\"latency\"])\n",
        "    print(\"Speed: \", metadata[\"tokens_per_second\"])\n",
        "    print(\"-\" * 50)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {},
      "source": [
        "## 3. Executing Real-Time Weather API Calls\n",
        "\n",
        "To make real-time weather API calls, we'll use the `requests` library to fetch data from a weather service. After obtaining the weather data, we will ask our xLAM model to summarize the results."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 4,
      "metadata": {},
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "The current weather in San Francisco is 16.0 celsius\n"
          ]
        }
      ],
      "source": [
        "import ast\n",
        "import requests\n",
        "\n",
        "def get_weather(location, unit):\n",
        "    \"\"\"\n",
        "    Get the current weather for a specified location.\n",
        "\n",
        "    Args:\n",
        "        location (str): The city and state, e.g. San Francisco, New York.\n",
        "        unit (str): The unit of temperature to return, either 'celsius' or 'fahrenheit'.\n",
        "\n",
        "    Returns:\n",
        "        float: The temperature in the corresponding unit.\n",
        "    \"\"\"\n",
        "    base_url = \"https://wttr.in\"\n",
        "    unit_param = \"m\" if unit == \"celsius\" else \"u\"\n",
        "    params = {\n",
        "        \"format\": \"j1\",\n",
        "        \"unit\": unit_param\n",
        "    }\n",
        "    response = requests.get(f\"{base_url}/{location}\", params=params)\n",
        "    if response.status_code == 200:\n",
        "        weather_data = response.json()[\"current_condition\"][0]\n",
        "        return float(weather_data[\"temp_C\"]) if unit == \"celsius\" else float(weather_data[\"temp_F\"])\n",
        "    else:\n",
        "        return {\"error\": \"Failed to retrieve weather data\"}\n",
        "    \n",
        "def execute_function_calls(function_calls):\n",
        "    \"\"\"\n",
        "    Convert the dictionary function_calls to executable Python code and execute the corresponding functions.\n",
        "\n",
        "    Args:\n",
        "        function_calls (list): A list of dictionaries containing function calls and their arguments.\n",
        "\n",
        "    Returns:\n",
        "        list: A list of results from executing the functions.\n",
        "    \"\"\"\n",
        "    results = []\n",
        "    for function_call in function_calls:\n",
        "        for func_name, args in function_call.items():\n",
        "            if func_name in globals() and callable(globals()[func_name]):\n",
        "                try:\n",
        "                    # Safely evaluate the arguments\n",
        "                    safe_args = ast.literal_eval(str(args))\n",
        "                    print(safe_args)\n",
        "                    # Call the function with unpacked arguments\n",
        "                    func_result = globals()[func_name](**safe_args)\n",
        "                    results.append(func_result)\n",
        "                except Exception as e:\n",
        "                    results.append(f\"Error {str(e)}\")\n",
        "            else:\n",
        "                results.append(\"Error: Function not found or not callable\")\n",
        "    \n",
        "    return results\n",
        "\n",
        "# Example usage\n",
        "location = \"San Francisco\"\n",
        "unit = \"celsius\"\n",
        "weather_data = get_weather(location, unit)\n",
        "print(f\"The current weather in {location} is {weather_data} {unit}\")"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 5,
      "metadata": {},
      "outputs": [
        {
          "name": "stderr",
          "output_type": "stream",
          "text": [
            "Processed prompts: 100%|██████████| 1/1 [00:00<00:00,  4.86it/s, Generation Speed: 180.67 toks/s]\n"
          ]
        },
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "The function call result: [\n",
            "  {\n",
            "    \"get_weather\": {\n",
            "      \"location\": \"San Francisco\",\n",
            "      \"unit\": \"celsius\"\n",
            "    }\n",
            "  }\n",
            "]\n",
            "{'location': 'San Francisco', 'unit': 'celsius'}\n",
            "Execution results:  [16.0]\n",
            "--------------------------------------------------\n"
          ]
        },
        {
          "name": "stderr",
          "output_type": "stream",
          "text": [
            "Processed prompts: 100%|██████████| 1/1 [00:00<00:00,  4.67it/s, Generation Speed: 183.21 toks/s]\n"
          ]
        },
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "The function call result: [\n",
            "  {\n",
            "    \"get_weather\": {\n",
            "      \"location\": \"New York\",\n",
            "      \"unit\": \"fahrenheit\"\n",
            "    }\n",
            "  }\n",
            "]\n",
            "{'location': 'New York', 'unit': 'fahrenheit'}\n",
            "Execution results:  [74.0]\n"
          ]
        }
      ],
      "source": [
        "# Example 1\n",
        "query = \"I want to know the weather in San Francisco in Celsius\"\n",
        "function_calls, metadata = handler.process_query(query, all_apis, TASK_INSTRUCTION, FORMAT_INSTRUCTION)\n",
        "print(f\"The function call result: {json.dumps(function_calls, indent=2)}\")\n",
        "execution_results = execute_function_calls(function_calls)\n",
        "print(\"Execution results: \", execution_results)\n",
        "print(\"-\" * 50)\n",
        "\n",
        "# Example 2\n",
        "query = \"Tell me the temperature in New York in Fahrenheit\"\n",
        "function_calls, metadata = handler.process_query(query, all_apis, TASK_INSTRUCTION, FORMAT_INSTRUCTION)\n",
        "print(f\"The function call result: {json.dumps(function_calls, indent=2)}\")\n",
        "execution_results = execute_function_calls(function_calls)\n",
        "print(\"Execution results: \", execution_results)"
      ]
    }
  ],
  "metadata": {
    "kernelspec": {
      "display_name": "Python 3",
      "language": "python",
      "name": "python3"
    },
    "language_info": {
      "codemirror_mode": {
        "name": "ipython",
        "version": 3
      },
      "file_extension": ".py",
      "mimetype": "text/x-python",
      "name": "python",
      "nbconvert_exporter": "python",
      "pygments_lexer": "ipython3",
      "version": "3.10.14"
    }
  },
  "nbformat": 4,
  "nbformat_minor": 4
}