File size: 15,119 Bytes
8b55b6a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
import torch
import ast
import math
from PIL import Image
from packaging.version import Version
def has_fn(model, fn_name):
"""Check if model has a function fn_name"""
return callable(getattr(model, fn_name, None))
def exists(val):
return val is not None
def num_params(module, filter_to_trainable=False):
"""Returns the number of parameters in the module, or optionally only the trainable parameters"""
if filter_to_trainable:
return sum(p.numel() for p in module.parameters() if p.requires_grad)
else:
return sum(p.numel() for p in module.parameters())
def hasattr_recursive(obj, att):
"""
Check if obj has nested attribute
Example: hasattr_recursive(obj, 'a.b.c') is equivalent to hasattr(obj, 'a') and hasattr(obj.a, 'b') and hasattr(obj.a.b, 'c')
"""
if att == "":
return True
i = att.find(".")
if i < 0:
return hasattr(obj, att)
else:
try:
return hasattr_recursive(getattr(obj, att[:i]), att[i + 1 :])
except:
return False
def getattr_recursive(obj, att):
"""
Return nested attribute of obj
Example: getattr_recursive(obj, 'a.b.c') is equivalent to obj.a.b.c
"""
if att == "":
return obj
i = att.find(".")
if i < 0:
return getattr(obj, att)
else:
return getattr_recursive(getattr(obj, att[:i]), att[i + 1 :])
def setattr_recursive(obj, att, val):
"""
Set nested attribute of obj
Example: setattr_recursive(obj, 'a.b.c', val) is equivalent to obj.a.b.c = val
"""
if "." in att:
obj = getattr_recursive(obj, ".".join(att.split(".")[:-1]))
setattr(obj, att.split(".")[-1], val)
def stack_with_padding(list_of_tensors, padding_value=0, padding_side="right"):
"""
Stack a list of tensors with padding on one side
Args:
list_of_tensors (list[torch.Tensor]): List of tensors to stack
padding_value (int, optional): Value to pad with. Defaults to 0.
padding_side (str, optional): Side to pad on. Defaults to "right".
Returns:
torch.Tensor: Stacked tensors
"""
max_tokens = max(tensor.size(0) for tensor in list_of_tensors)
padded_tensors = []
for tensor in list_of_tensors:
num_tokens = tensor.size(0)
if len(tensor.size()) == 1:
padding = torch.full(
(max_tokens - num_tokens,),
padding_value,
dtype=tensor.dtype,
device=tensor.device,
)
else:
padding = torch.full(
(max_tokens - num_tokens, tensor.size(1)),
padding_value,
dtype=tensor.dtype,
device=tensor.device,
)
padded_tensor = (
torch.cat((tensor, padding), dim=0)
if padding_side == "right"
else torch.cat((padding, tensor), dim=0)
)
padded_tensors.append(padded_tensor)
return torch.stack(padded_tensors)
def check_embedding_fns(lang_model):
"""Checks for and attempts to set {get/set}_{input/output}_embeddings functions to the model"""
if not has_fn(lang_model, "get_input_embeddings"):
if hasattr_recursive(lang_model, "transformer.wte"): # MPT
lang_model.get_input_embeddings = lambda: lang_model.transformer.wte
elif hasattr_recursive(lang_model, "model.decoder.embed_tokens"): # OPT
lang_model.get_input_embeddings = lambda: lang_model.decoder.embed_tokens
else:
raise ValueError(
"We require the language encoder to have a get_input_embeddings method but we couldn't determine the name of the input embeddings attribute. Please supply this manually in factory.py."
)
if not has_fn(lang_model, "set_input_embeddings"):
if hasattr_recursive(lang_model, "transformer.wte"): # MPT
lang_model.set_input_embeddings = lambda x: setattr_recursive(
lang_model, "transformer.wte", x
)
elif hasattr_recursive(lang_model, "model.decoder.embed_tokens"): # OPT
lang_model.set_input_embeddings = lambda x: setattr_recursive(
lang_model, "model.decoder.embed_tokens", x
)
else:
raise ValueError(
"We require the language encoder to have a set_input_embeddings method but we couldn't determine the name of the input embeddings attribute. Please supply this manually in factory.py."
)
if not has_fn(lang_model, "get_output_embeddings"):
if hasattr_recursive(lang_model, "lm_head"):
lang_model.get_output_embeddings = lambda: lang_model.lm_head
else:
raise ValueError(
"We require the language encoder to have a get_output_embeddings method but we couldn't determine the name of the output embeddings attribute. Please supply this manually in factory.py."
)
if not has_fn(lang_model, "set_output_embeddings"):
if hasattr_recursive(lang_model, "lm_head"):
lang_model.set_output_embeddings = lambda x: setattr_recursive(
lang_model, "lm_head", x
)
else:
raise ValueError(
"We require the language encoder to have a set_output_embeddings method but we couldn't determine the name of the output embeddings attribute. Please supply this manually in factory.py."
)
def has_fn(model, fn_name):
"""Check if model has a function fn_name"""
return callable(getattr(model, fn_name, None))
# Adopted from https://github.com/haotian-liu/LLaVA. Below is the original copyright:
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
def unpad_image(tensor, original_size, keep_original_shape=False):
"""
Unpads a PyTorch tensor of a padded and resized image.
Args:
tensor (torch.Tensor): The image tensor, assumed to be in CxHxW format.
original_size (tuple): The original size of the image (height, width).
Returns:
torch.Tensor: The unpadded image tensor.
"""
original_width, original_height = original_size
current_height, current_width = tensor.shape[1:]
original_aspect_ratio = original_width / original_height
current_aspect_ratio = current_width / current_height
if original_aspect_ratio > current_aspect_ratio:
scale_factor = current_width / original_width
new_height = int(original_height * scale_factor)
padding = (current_height - new_height) // 2
if keep_original_shape:
attention_mask = torch.ones((current_height, current_width), device=tensor.device)
attention_mask[:padding, :] = 0
attention_mask[current_height - padding:, :] = 0
return tensor, attention_mask
else:
unpadded_tensor = tensor[:, padding:current_height - padding, :]
return unpadded_tensor, None
else:
scale_factor = current_height / original_height
new_width = int(original_width * scale_factor)
padding = (current_width - new_width) // 2
if keep_original_shape:
attention_mask = torch.ones((current_height, current_width), device=tensor.device)
attention_mask[:, :padding] = 0
attention_mask[:, current_width - padding:] = 0
return tensor, attention_mask
else:
unpadded_tensor = tensor[:, :, padding:current_width - padding]
return unpadded_tensor, None
def select_best_resolution(original_size, possible_resolutions):
"""
Selects the best resolution from a list of possible resolutions based on the original size.
Args:
original_size (tuple): The original size of the image in the format (width, height).
possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
Returns:
tuple: The best fit resolution in the format (width, height).
"""
original_width, original_height = original_size
best_fit = None
max_effective_resolution = 0
min_wasted_resolution = float('inf')
for width, height in possible_resolutions:
scale = min(width / original_width, height / original_height)
downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale)
effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height)
wasted_resolution = (width * height) - effective_resolution
if effective_resolution > max_effective_resolution or (effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution):
max_effective_resolution = effective_resolution
min_wasted_resolution = wasted_resolution
best_fit = (width, height)
return best_fit
def resize_and_pad_image(image, target_resolution):
"""
Resize and pad an image to a target resolution while maintaining aspect ratio.
Args:
image (PIL.Image.Image): The input image.
target_resolution (tuple): The target resolution (width, height) of the image.
Returns:
PIL.Image.Image: The resized and padded image.
"""
original_width, original_height = image.size
target_width, target_height = target_resolution
scale_w = target_width / original_width
scale_h = target_height / original_height
if scale_w < scale_h:
new_width = target_width
new_height = min(math.ceil(original_height * scale_w), target_height)
else:
new_height = target_height
new_width = min(math.ceil(original_width * scale_h), target_width)
# Resize the image
resized_image = image.resize((new_width, new_height))
new_image = Image.new('RGB', (target_width, target_height), (0, 0, 0))
paste_x = (target_width - new_width) // 2
paste_y = (target_height - new_height) // 2
new_image.paste(resized_image, (paste_x, paste_y))
return new_image
def divide_to_patches(image, patch_size):
"""
Divides an image into patches of a specified size.
Args:
image (PIL.Image.Image): The input image.
patch_size (int): The size of each patch.
Returns:
list: A list of PIL.Image.Image objects representing the patches.
"""
patches = []
width, height = image.size
for i in range(0, height, patch_size):
for j in range(0, width, patch_size):
box = (j, i, j + patch_size, i + patch_size)
patch = image.crop(box)
patches.append(patch)
return patches
def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size):
"""
Calculate the shape of the image patch grid after the preprocessing for images of any resolution.
Args:
image_size (tuple): The size of the input image in the format (width, height).
grid_pinpoints (str): A string representation of a list of possible resolutions.
patch_size (int): The size of each image patch.
Returns:
tuple: The shape of the image patch grid in the format (width, height).
"""
if type(grid_pinpoints) is list:
possible_resolutions = grid_pinpoints
else:
possible_resolutions = ast.literal_eval(grid_pinpoints)
width, height = select_best_resolution(image_size, possible_resolutions)
return width // patch_size, height // patch_size
def process_anyres_image(image, processor, grid_pinpoints):
"""
Process an image with variable resolutions.
Args:
image (PIL.Image.Image): The input image to be processed.
processor: The image processor object.
grid_pinpoints (str): A string representation of a list of possible resolutions.
Returns:
torch.Tensor: A tensor containing the processed image patches.
"""
# FIXME: determine grid_pinpoints from image sizes.
if type(grid_pinpoints) is list:
possible_resolutions = grid_pinpoints
else:
possible_resolutions = ast.literal_eval(grid_pinpoints)
best_resolution = select_best_resolution(image.size, possible_resolutions)
image_padded = resize_and_pad_image(image, best_resolution)
processor_size = processor.transforms[0].size
patches = divide_to_patches(image_padded, processor_size[0])
image_original_resize = image.resize((processor_size[0], processor_size[0]))
image_patches = [image_original_resize] + patches
image_patches = [processor(image_patch)
for image_patch in image_patches]
return torch.stack(image_patches, dim=0)
def expand2square(pil_img, background_color):
width, height = pil_img.size
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height) // 2))
return result
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width) // 2, 0))
return result
def process_images(images, image_processor, model_cfg):
image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None)
new_images = []
if image_aspect_ratio == 'pad':
for image in images:
image = expand2square(image, tuple(int(x*255) for x in image_processor.transforms[-1].mean))
image = image_processor(image)
new_images.append(image)
elif image_aspect_ratio in ["anyres", "anyres-legacy"]:
base_img_size = image_processor.transforms[0].size[0]
for image in images:
image = process_anyres_image(image, image_processor, [[base_img_size,base_img_size*2],
[base_img_size*2,base_img_size],
[base_img_size*2,base_img_size*2],
[base_img_size*3,base_img_size],
[base_img_size,base_img_size*3]])
# Debug any res inference by only using 672x672.
# image = process_anyres_image(image, image_processor, [[base_img_size*2,base_img_size*2]])
new_images.append(image)
else:
return image_processor(images)
if all(x.shape == new_images[0].shape for x in new_images):
new_images = torch.stack(new_images, dim=0)
return new_images
|