File size: 2,120 Bytes
d6afeb8 9da6249 d6afeb8 fb41e81 d6afeb8 9da6249 d6afeb8 fb41e81 d6afeb8 fb41e81 d6afeb8 fb41e81 d6afeb8 fb41e81 d6afeb8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
---
license: mit
base_model: microsoft/MiniLM-L12-H384-uncased
tags:
- Language
- image-Emotion
- miniLM
- PyTorch
- Trainer
- SequenceClassification
- WeightedLoss
- CrossEntropyLoss
- F1Score
- HuggingFaceHub
- generated_from_trainer
datasets:
- emotion
metrics:
- f1
model-index:
- name: miniLM_finetuned_Emotion_2024_06_15
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
config: split
split: validation
args: split
metrics:
- name: F1
type: f1
value: 0.9205262112499766
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# miniLM_finetuned_Emotion_2024_06_15
This model is a fine-tuned version of [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3634
- F1: 0.9205
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.367 | 1.0 | 250 | 1.0076 | 0.5959 |
| 0.8543 | 2.0 | 500 | 0.6459 | 0.8558 |
| 0.5709 | 3.0 | 750 | 0.4652 | 0.9057 |
| 0.43 | 4.0 | 1000 | 0.3902 | 0.9161 |
| 0.3763 | 5.0 | 1250 | 0.3634 | 0.9205 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|