Salmamoori
commited on
Commit
•
ee11e38
1
Parent(s):
e8e7bed
End of training
Browse files
README.md
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: microsoft/MiniLM-L12-H384-uncased
|
4 |
+
tags:
|
5 |
+
- Language
|
6 |
+
- image-Emotion
|
7 |
+
- miniLM
|
8 |
+
- PyTorch
|
9 |
+
- Trainer
|
10 |
+
- SequenceClassification
|
11 |
+
- WeightedLoss
|
12 |
+
- CrossEntropyLoss
|
13 |
+
- F1Score
|
14 |
+
- HuggingFaceHub
|
15 |
+
- generated_from_trainer
|
16 |
+
datasets:
|
17 |
+
- emotion
|
18 |
+
metrics:
|
19 |
+
- f1
|
20 |
+
model-index:
|
21 |
+
- name: miniLM_finetuned_Emotion_2024_06_17
|
22 |
+
results:
|
23 |
+
- task:
|
24 |
+
name: Text Classification
|
25 |
+
type: text-classification
|
26 |
+
dataset:
|
27 |
+
name: emotion
|
28 |
+
type: emotion
|
29 |
+
config: split
|
30 |
+
split: validation
|
31 |
+
args: split
|
32 |
+
metrics:
|
33 |
+
- name: F1
|
34 |
+
type: f1
|
35 |
+
value: 0.9349971922956838
|
36 |
+
---
|
37 |
+
|
38 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
39 |
+
should probably proofread and complete it, then remove this comment. -->
|
40 |
+
|
41 |
+
# miniLM_finetuned_Emotion_2024_06_17
|
42 |
+
|
43 |
+
This model is a fine-tuned version of [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) on the emotion dataset.
|
44 |
+
It achieves the following results on the evaluation set:
|
45 |
+
- Loss: 0.4059
|
46 |
+
- F1: 0.9350
|
47 |
+
|
48 |
+
## Model description
|
49 |
+
|
50 |
+
More information needed
|
51 |
+
|
52 |
+
## Intended uses & limitations
|
53 |
+
|
54 |
+
More information needed
|
55 |
+
|
56 |
+
## Training and evaluation data
|
57 |
+
|
58 |
+
More information needed
|
59 |
+
|
60 |
+
## Training procedure
|
61 |
+
|
62 |
+
### Training hyperparameters
|
63 |
+
|
64 |
+
The following hyperparameters were used during training:
|
65 |
+
- learning_rate: 2e-05
|
66 |
+
- train_batch_size: 64
|
67 |
+
- eval_batch_size: 64
|
68 |
+
- seed: 42
|
69 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
70 |
+
- lr_scheduler_type: linear
|
71 |
+
- num_epochs: 50
|
72 |
+
- mixed_precision_training: Native AMP
|
73 |
+
|
74 |
+
### Training results
|
75 |
+
|
76 |
+
| Training Loss | Epoch | Step | Validation Loss | F1 |
|
77 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|
|
78 |
+
| 1.3684 | 1.0 | 250 | 1.0416 | 0.5803 |
|
79 |
+
| 0.8635 | 2.0 | 500 | 0.6225 | 0.8729 |
|
80 |
+
| 0.5165 | 3.0 | 750 | 0.3755 | 0.9130 |
|
81 |
+
| 0.3319 | 4.0 | 1000 | 0.2792 | 0.9256 |
|
82 |
+
| 0.2494 | 5.0 | 1250 | 0.2474 | 0.9252 |
|
83 |
+
| 0.1914 | 6.0 | 1500 | 0.2182 | 0.9290 |
|
84 |
+
| 0.156 | 7.0 | 1750 | 0.2140 | 0.9307 |
|
85 |
+
| 0.1435 | 8.0 | 2000 | 0.1807 | 0.9351 |
|
86 |
+
| 0.1258 | 9.0 | 2250 | 0.1830 | 0.9353 |
|
87 |
+
| 0.1128 | 10.0 | 2500 | 0.1655 | 0.9404 |
|
88 |
+
| 0.1023 | 11.0 | 2750 | 0.1968 | 0.9339 |
|
89 |
+
| 0.0967 | 12.0 | 3000 | 0.1816 | 0.9333 |
|
90 |
+
| 0.0914 | 13.0 | 3250 | 0.1840 | 0.9338 |
|
91 |
+
| 0.0818 | 14.0 | 3500 | 0.2094 | 0.9316 |
|
92 |
+
| 0.0755 | 15.0 | 3750 | 0.1945 | 0.9345 |
|
93 |
+
| 0.0718 | 16.0 | 4000 | 0.2040 | 0.9325 |
|
94 |
+
| 0.0641 | 17.0 | 4250 | 0.2230 | 0.9369 |
|
95 |
+
| 0.0613 | 18.0 | 4500 | 0.2349 | 0.9332 |
|
96 |
+
| 0.0556 | 19.0 | 4750 | 0.2530 | 0.9249 |
|
97 |
+
| 0.0521 | 20.0 | 5000 | 0.2334 | 0.9376 |
|
98 |
+
| 0.0526 | 21.0 | 5250 | 0.2531 | 0.9306 |
|
99 |
+
| 0.0423 | 22.0 | 5500 | 0.2336 | 0.9383 |
|
100 |
+
| 0.039 | 23.0 | 5750 | 0.2848 | 0.9352 |
|
101 |
+
| 0.0435 | 24.0 | 6000 | 0.2955 | 0.9363 |
|
102 |
+
| 0.0371 | 25.0 | 6250 | 0.3075 | 0.9362 |
|
103 |
+
| 0.0338 | 26.0 | 6500 | 0.2910 | 0.9339 |
|
104 |
+
| 0.0319 | 27.0 | 6750 | 0.3133 | 0.9343 |
|
105 |
+
| 0.0305 | 28.0 | 7000 | 0.3106 | 0.9344 |
|
106 |
+
| 0.0254 | 29.0 | 7250 | 0.3155 | 0.9370 |
|
107 |
+
| 0.0288 | 30.0 | 7500 | 0.3310 | 0.9339 |
|
108 |
+
| 0.0228 | 31.0 | 7750 | 0.3463 | 0.9364 |
|
109 |
+
| 0.0224 | 32.0 | 8000 | 0.3618 | 0.9353 |
|
110 |
+
| 0.0207 | 33.0 | 8250 | 0.3720 | 0.9347 |
|
111 |
+
| 0.022 | 34.0 | 8500 | 0.3672 | 0.9374 |
|
112 |
+
| 0.0222 | 35.0 | 8750 | 0.3525 | 0.9388 |
|
113 |
+
| 0.0197 | 36.0 | 9000 | 0.3848 | 0.9384 |
|
114 |
+
| 0.0196 | 37.0 | 9250 | 0.3722 | 0.9369 |
|
115 |
+
| 0.0175 | 38.0 | 9500 | 0.3490 | 0.9350 |
|
116 |
+
| 0.0168 | 39.0 | 9750 | 0.3539 | 0.9365 |
|
117 |
+
| 0.0167 | 40.0 | 10000 | 0.3590 | 0.9391 |
|
118 |
+
| 0.0144 | 41.0 | 10250 | 0.3824 | 0.9382 |
|
119 |
+
| 0.0164 | 42.0 | 10500 | 0.3973 | 0.9322 |
|
120 |
+
| 0.0124 | 43.0 | 10750 | 0.3892 | 0.9372 |
|
121 |
+
| 0.012 | 44.0 | 11000 | 0.4102 | 0.9333 |
|
122 |
+
| 0.0142 | 45.0 | 11250 | 0.3921 | 0.9366 |
|
123 |
+
| 0.012 | 46.0 | 11500 | 0.3925 | 0.9361 |
|
124 |
+
| 0.0097 | 47.0 | 11750 | 0.3924 | 0.9360 |
|
125 |
+
| 0.0107 | 48.0 | 12000 | 0.3952 | 0.9330 |
|
126 |
+
| 0.0093 | 49.0 | 12250 | 0.4067 | 0.9360 |
|
127 |
+
| 0.0104 | 50.0 | 12500 | 0.4059 | 0.9350 |
|
128 |
+
|
129 |
+
|
130 |
+
### Framework versions
|
131 |
+
|
132 |
+
- Transformers 4.41.2
|
133 |
+
- Pytorch 2.3.1+cu121
|
134 |
+
- Datasets 2.20.0
|
135 |
+
- Tokenizers 0.19.1
|