Update README.md
Browse files
README.md
CHANGED
@@ -58,6 +58,9 @@ import numpy as np # only used for the postprocessing sigmoid
|
|
58 |
|
59 |
sentences = ["hello world"] # for example a batch of 1
|
60 |
|
|
|
|
|
|
|
61 |
tokenizer = Tokenizer.from_pretrained("SamLowe/roberta-base-go_emotions")
|
62 |
|
63 |
# optional - set pad to only pad to longest in batch, not a fixed length. Without this, the model will run slower, esp for shorter input strings.
|
@@ -83,10 +86,14 @@ input_feed_dict = {
|
|
83 |
def sigmoid(_outputs):
|
84 |
return 1.0 / (1.0 + np.exp(-_outputs))
|
85 |
|
86 |
-
|
|
|
|
|
87 |
|
88 |
-
|
89 |
-
|
|
|
|
|
90 |
```
|
91 |
|
92 |
### Example notebook: showing usage, accuracy & performance
|
|
|
58 |
|
59 |
sentences = ["hello world"] # for example a batch of 1
|
60 |
|
61 |
+
# labels as (ordered) list - from the go_emotions dataset
|
62 |
+
labels = ['admiration', 'amusement', 'anger', 'annoyance', 'approval', 'caring', 'confusion', 'curiosity', 'desire', 'disappointment', 'disapproval', 'disgust', 'embarrassment', 'excitement', 'fear', 'gratitude', 'grief', 'joy', 'love', 'nervousness', 'optimism', 'pride', 'realization', 'relief', 'remorse', 'sadness', 'surprise', 'neutral']
|
63 |
+
|
64 |
tokenizer = Tokenizer.from_pretrained("SamLowe/roberta-base-go_emotions")
|
65 |
|
66 |
# optional - set pad to only pad to longest in batch, not a fixed length. Without this, the model will run slower, esp for shorter input strings.
|
|
|
86 |
def sigmoid(_outputs):
|
87 |
return 1.0 / (1.0 + np.exp(-_outputs))
|
88 |
|
89 |
+
logits = model.run(output_names=output_names, input_feed=input_feed_dict)[0]
|
90 |
+
|
91 |
+
model_outputs = sigmoid(logits) # produces a numpy array, one row per input item, one col per label
|
92 |
|
93 |
+
# for example, just to show the top result per input item
|
94 |
+
for probas in model_outputs:
|
95 |
+
top_result_index = np.argmax(probas)
|
96 |
+
print(labels[top_result_index], "with score:", probas[top_result_index])
|
97 |
```
|
98 |
|
99 |
### Example notebook: showing usage, accuracy & performance
|