File size: 5,331 Bytes
d31084e ef7d81f d31084e ef7d81f 4b1312f ef7d81f d31084e ef7d81f 4b1312f ef7d81f d31084e ef7d81f 4b1312f ef7d81f d31084e ef7d81f 4b1312f ef7d81f 4b3871e ef7d81f 83716b7 ef7d81f d31084e ef7d81f 83716b7 ef7d81f c260988 b7cf562 ef7d81f b7cf562 ef7d81f b7cf562 ef7d81f b7cf562 ef7d81f b7cf562 ef7d81f b7cf562 ef7d81f b7cf562 ef7d81f b7cf562 ef7d81f b7cf562 ef7d81f b7cf562 ef7d81f b7cf562 ef7d81f b7cf562 ef7d81f b7cf562 2775ced ef7d81f 2775ced ef7d81f 2775ced ef7d81f 2775ced ef7d81f 2775ced ef7d81f 2775ced ef7d81f 2775ced ef7d81f 2775ced ef7d81f 2775ced ef7d81f 2775ced ef7d81f 2775ced ef7d81f 2775ced ef7d81f 2775ced ef7d81f 59d4418 cb993e1 47f1cac 27050c6 222924b 553d60b 59d4418 553d60b f0ee7a8 553d60b d68deeb 553d60b 8b0d86f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
---
language: en
license: mit
tags:
- summarization
model-index:
- name: SamuelAllen123/t5-efficient-large-nl36_fine_tune_sum_V2
results:
- task:
type: summarization
name: Summarization
dataset:
name: samsum
type: samsum
config: samsum
split: test
metrics:
- type: rouge
value: 50.5049
name: ROUGE-1
verified: true
- type: rouge
value: 25.6469
name: ROUGE-2
verified: true
- type: rouge
value: 41.7544
name: ROUGE-L
verified: true
- type: rouge
value: 46.2055
name: ROUGE-LSUM
verified: true
- type: loss
value: 1.5158178806304932
name: loss
verified: true
- type: gen_len
value: 24.0342
name: gen_len
verified: true
- task:
type: summarization
name: Summarization
dataset:
name: cnn_dailymail
type: cnn_dailymail
config: 3.0.0
split: test
metrics:
- type: rouge
value: 34.4055
name: ROUGE-1
verified: true
- type: rouge
value: 14.127
name: ROUGE-2
verified: true
- type: rouge
value: 24.3353
name: ROUGE-L
verified: true
- type: rouge
value: 31.6582
name: ROUGE-LSUM
verified: true
- type: loss
value: 2.4456119537353516
name: loss
verified: true
- type: gen_len
value: 45.928
name: gen_len
verified: true
- task:
type: summarization
name: Summarization
dataset:
name: samsum
type: samsum
config: samsum
split: train
metrics:
- type: rouge
value: 54.933
name: ROUGE-1
verified: true
- type: rouge
value: 31.7965
name: ROUGE-2
verified: true
- type: rouge
value: 47.0057
name: ROUGE-L
verified: true
- type: rouge
value: 51.2027
name: ROUGE-LSUM
verified: true
- type: loss
value: 1.130684494972229
name: loss
verified: true
- type: gen_len
value: 23.7989
name: gen_len
verified: true
- task:
type: summarization
name: Summarization
dataset:
name: scientific_papers
type: scientific_papers
config: pubmed
split: train
metrics:
- type: rouge
value: 23.6698
name: ROUGE-1
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMTg4OTMwYjkyNmU1ZjdmN2Q4MWE4YzFkZjUyMDZhNDNhYjBkODg3ZjI5NDQxMTcyNDUyMzkwNDZlNjNhZGRiOSIsInZlcnNpb24iOjF9.0kRK7iA642z0YWAH81v1_-pil6TyM3bezGfZtqGev5O7AgGkxzfQaIDNhkVVvVIJdUPJFD7L36XyLx3AWO5BCQ
- type: rouge
value: 7.5691
name: ROUGE-2
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiY2Q2MDc1ZjZlYjRmZDZkNjY3MmFhODAzZWUwZjA1M2RlZGUwYTY2ZjM2ZTM1NzQ3YjAxMDFiMWZlMGMwNTgyOCIsInZlcnNpb24iOjF9._Y59aEEGLn0Ij622V8Rwljp-h4uTuCfoPgJdvMN6GvCyKRzwugHo8tedfTpbTAb6cicjiWjKvKurqXTjpw1KAw
- type: rouge
value: 15.6071
name: ROUGE-L
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNjMwM2Q2ODYwZWE4MzNhNDNlNzlhNjU2NGUxYjlhNDM3MzM5MmJjNzU4YTYxNzI4ZmQ3YzQ1YjMzMDZkMTQ4ZCIsInZlcnNpb24iOjF9.zyfiVsuCEXCTkGAqNxCZ8hTKVxAE0JmJRbNZ04HoBi7qYFB13_7JTB6tOvAEH34W-2yvpOs4cBsFqtXg7RvnCA
- type: rouge
value: 21.4565
name: ROUGE-LSUM
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOTE4MjVlZjI5NDBkZjRmODA3MmIzY2I0YWUwZjEyMzYwNjFjNTY3N2NjMmY3ZThlODBjN2VhZWZlODliZmEyZSIsInZlcnNpb24iOjF9.RFZbr5R9cJtrhzWMKys62fiBxKv8MYe6_115NBjEZ6wOwzVih5SdJE8r2EK-1wdCMF_jLGPYQvZ-zyj3KHGWCw
- type: loss
value: 3.9369945526123047
name: loss
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTc3MzMwYTg5OWIyZGQxNGJlYzExNTY0MjUyY2M5M2NiOGQ2ODI0MWFiMzJjYWY4ZGNkZmY2MmUyZjVjODRiYSIsInZlcnNpb24iOjF9.iDxSfTwZRV5VboHLjF4a47kPXagG7bY78WIejIM37ykpksXxVYssZlmK6UxtkEmZuWypqbQjz6oOjTjy6x3tDQ
- type: gen_len
value: 65.9987
name: gen_len
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiODdmYzFiNzU3N2VlMWMyMGEwZmFkZmExZWRlN2NjNWI3ZGJjNmYzMWExYWM5MWY2MzJkMmY0ZGE2NjFjMjRjYyIsInZlcnNpb24iOjF9.3ByM1s1Ux-PDBBnf6i3FUtFLzpmZXcikIfrsR3vTIi9567r789Wm8sW81blFHNfnST-ZHQxPKJOuv4ho8S4eCg
---
*NOT SELF REPORTED VALUES FOR THE LEADERBOARD, I HAVE NO CLUE WHY ITS BROKE. CHECK PULL REQUEST*
Use summarization without adding summarize to the start of the string.
Trained on Samsum train split.
Parameters for training:
no_decay = ["bias", "LayerNorm.weight", "layer_norm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
{
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
]
lr = 0.00005
optimizer = torch.optim.RAdam(optimizer_grouped_parameters, lr=lr)
lr_scheduler = get_scheduler(
name="linear",
optimizer=optimizer,
num_warmup_steps=0,
num_training_steps=50005)
This was only for 10K steps with a batch size of 10
If you want more info, feel free to message me or email me at:
[email protected] |